1. Cannell, M. G., World Forest Biomass and Primary Production Data, Academic Press, London, 1982.
2. Zhu, X. and D. Liu, "Improving forest aboveground biomass estimation using seasonal landsat NDVI time-series," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 102, 222-231, 2015.
doi:10.1016/j.isprsjprs.2014.08.014 Google Scholar
3. Zhao, P., D. Lu, G. Wang, et al. "Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation," Remote Sensing, Vol. 8, No. 6, 469, 2016.
doi:10.3390/rs8060469 Google Scholar
4. Karlson, M., M. Ostwald, H. Reese, et al. "Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using landsat 8 and random forest," Remote Sensing, Vol. 7, No. 8, 10017-10041, 2015.
doi:10.3390/rs70810017 Google Scholar
5. Mutanga, O., E. Adam, and M. A. Cho, "High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm," International Journal of Applied Earth Observation and Geoinformation, Vol. 18, 399-406, 2012.
doi:10.1016/j.jag.2012.03.012 Google Scholar
6. Mitchard, E. T., S. S. Saatchi, I. H. Woodhouse, et al. "Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes," Geophysical Research Letters, Vol. 36, No. 23, 2009.
doi:10.1029/2009GL040692 Google Scholar
7. Qazi, W. A., S. Baig, H. Gilani, et al. "Comparison of forest aboveground biomass estimates from passive and active remote sensing sensors over Kayar Khola watershed, Chitwan district, Nepal," Journal of Applied Remote Sensing, Vol. 11, No. 2, 026038, 2017.
doi:10.1117/1.JRS.11.026038 Google Scholar
8. Baig, S., W. Qazi, A. M. Akhtar, et al. "Above ground biomass estimation of Dalbergia sissoo forest plantation from dual-polarized ALOS-2 PALSAR data," Canadian Journal of Remote Sensing, 2017, doi: 10.1080/07038992.2017.1330143. Google Scholar
9. Neumann, M., S. S. Saatchi, L. M. Ulander, et al. "Assessing performance of L- and P-band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 3, 714-726, 2012.
doi:10.1109/TGRS.2011.2176133 Google Scholar
10. Drake, J. B., R. G. Knox, R. O. Dubayah, et al. "Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships," Global Ecology and Biogeography, Vol. 12, No. 2, 147-159, 2003.
doi:10.1046/j.1466-822X.2003.00010.x Google Scholar
11. Urbazaev, M., C. Thiel, F. Cremer, et al. "Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne lidar, and SAR and optical satellite data in Mexico," Carbon Balance and Management, Vol. 13, No. 1, 5, 2018.
doi:10.1186/s13021-018-0093-5 Google Scholar
12. Shao, Z. and L. Zhang, "Estimating forest aboveground biomass by combining optical and SAR data: A case study in Genhe, Inner Mongolia, China," Sensors, Vol. 16, No. 6, 834, 2016.
doi:10.3390/s16060834 Google Scholar
13. Yamaguchi, Y., T. Moriyama, M. Ishido, et al. "Four-component scattering model for polarimetric SAR image decomposition," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 8, 1699-1706, 2005.
doi:10.1109/TGRS.2005.852084 Google Scholar
14. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 2, 498-518, 1996.
doi:10.1109/36.485127 Google Scholar
15. Shimada, M., O. Isoguchi, T. Tadono, et al. "Palsar radiometric and geometric calibration," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 12, 3915-3932, 2009.
doi:10.1109/TGRS.2009.2023909 Google Scholar
16. Shimada, M., M. Watanabe, T. Moriyama, et al. "Palsar radiometric and geometric calibration," Journal of the Remote Sensing Society of Japan, Vol. 27, No. 4, 308-328, 2007. Google Scholar
17. Motohka, T., O. Isoguchi, M. Sakashita, et al. "Results of ALOS-2 PALSAR-2 calibration and validation after 3 years of operation," IGARSS 2018 --- 2018 IEEE International Geoscience and Remote Sensing Symposium, 4169-4170, IEEE, 2018.
doi:10.1109/IGARSS.2018.8519118 Google Scholar
18. Takahashi, H., "Estimation of ground water level in a peat swamp forest as an index of peat/forest fire," Proceedings of the International Symposium on Land Management and Biodiversity in Southeast Asia, Bali, Indonesia, September 2002. Google Scholar
19. Tawaraya, K., Y. Takaya, M. Turjaman, et al. "Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of central Kalimantan, Indonesia," Forest Ecology and management, Vol. 182, No. 1-3, 381-386, 2003.
doi:10.1016/S0378-1127(03)00086-0 Google Scholar
20. Page, S. E., R. Wust, D. Weiss, et al. "A record of late pleistocene and holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present and future carbon dynamics," Journal of Quaternary Science, Vol. 19, No. 7, 625-635, 2004.
doi:10.1002/jqs.884 Google Scholar
21. Tuah, S. J., Y. M. Jamal, and S. H. Limin, "Nutritional characteristics in leaves of plants native to tropical peat swamps and heath forests of central Kalimantan, Indonesia," Tropics, Vol. 12, No. 3, 221-245, 2003.
doi:10.3759/tropics.12.221 Google Scholar
22. Segah, H., H. Tani, and T. Hirano, "Detection of fire impact and vegetation recovery over tropical peat swamp forest by satellite data and ground-based NDVI instrument," International Journal of Remote Sensing, Vol. 31, No. 20, 5297-5314, 2010.
doi:10.1080/01431160903302981 Google Scholar
23. Miyamoto, K., J. S. Rahajoe, T. Kohyama, et al. "Forest structure and primary productivity in a bornean health forest," Biotropica, Vol. 39, No. 1, 35-42, 2007.
doi:10.1111/j.1744-7429.2006.00231.x Google Scholar
24. Anggraeni, B. W. and I. R. H. Purwanto, "Model pendugaan cadangan biomassa dan karbon hutan tropis basah di PT Sari Bumi Kusuma, Kalimantan Tengah,", PhD thesis, Universitas Gadjah Mada, 2011. Google Scholar
25. Jaya, A., U. J. Siregar, H. Daryono, et al. "Biomasa hutan rawa gambut tropika pada berbagai kondisi penutupan lahan," Jurnal Penelitian Hutan dan Konservasi Alam, Vol. 4, No. 4, 341-352, 2007.
doi:10.20886/jphka.2007.4.4.341-352 Google Scholar
26. Basuki, T., P. Van Laake, A. Skidmore, et al. "Allometric equations for estimating the above-ground biomass in tropical lowland dipterocarp forests," Forest Ecology and Management, Vol. 257, No. 8, 1684-1694, 2009.
doi:10.1016/j.foreco.2009.01.027 Google Scholar
27. Pearson, T., S. Walker, and S. Brown, "Sourcebook for land use, land-use change and forestry projects,", World Bank, Washington, DC, 2013. Google Scholar
28. Brown, S., Estimating Biomass and Biomass Change of Tropical Forests: A Primer, Vol. 134, Food & Agriculture Org., 1997.
29. Mitchard, E. T., S. S. Saatchi, I. H. Woodhouse, et al. "Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationp across four different African landscape," Geophysical Research Letters, Vol. 36, No. 23, 2009.
doi:10.1029/2009GL040692 Google Scholar
30. He, F. and X.-S. Hu, "Hubbell’s fundamental biodiversity parameter and the simpson diversity index," Ecology Letters, Vol. 8, No. 4, 386-390, 2005.
doi:10.1111/j.1461-0248.2005.00729.x Google Scholar
31. Antropov, O., Y. Rauste, T. Häme, et al. "Polarimetric alos palsar time series in mapping biomass of boreal forests," Remote Sensing, Vol. 9, No. 10, 999, 2017.
doi:10.3390/rs9100999 Google Scholar
32. Cougo, M. F., P. W. Souza-Filho, A. Q. Silva, et al. "Radarsat-2 backscattering for the modeling of biophysical parameters of regenerating mangrove forests," Remote Sensing, Vol. 7, No. 12, 17097-17112, 2015.
doi:10.3390/rs71215873 Google Scholar
33. Vaglio Laurin, G., F. Pirotti, M. Callegari, et al. "Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates," Remote Sensing, Vol. 9, No. 1, 18, 2017.
doi:10.3390/rs9010018 Google Scholar
34. Morel, A. C., S. S. Saatchi, Y. Malhi, et al. "Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data," Forest Ecology and Management, Vol. 262, No. 9, 1786-1798, 2011.
doi:10.1016/j.foreco.2011.07.008 Google Scholar
35. Kronseder, K., U. Ballhorn, V. B¨ohm, et al. "Above ground biomass estimation across forest types at different degradation levels in central Kalimantan using lidar data," International Journal of Applied Earth Observation and Geoinformation, Vol. 18, 37-48, 2012.
doi:10.1016/j.jag.2012.01.010 Google Scholar
36. Englhart, S., J. Franke, V. Keuck, et al. "Aboveground biomass estimation of tropical peat swamp forests using SAR and optical data," 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 6577-6580, IEEE, 2012.
doi:10.1109/IGARSS.2012.6352092 Google Scholar
37. Wagner, W., A. Luckman, J. Vietmeier, et al. "Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data," Remote Sensing of Environment, Vol. 85, No. 2, 125-144, 2003.
doi:10.1016/S0034-4257(02)00198-0 Google Scholar
38. Lucas, R., J. Armston, R. Fairfax, et al. "An evaluation of the ALOS PALSAR L-band backscatter --- Above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 3, No. 4, 576-593, 2010.
doi:10.1109/JSTARS.2010.2086436 Google Scholar
39. Englhart, S., V. Keuck, and F. Siegert, "Aboveground biomass retrieval in tropical forests --- The potential of combined X- and L-band SAR data use," Remote Sensing of Environment, Vol. 115, No. 5, 1260-1271, 2011.
doi:10.1016/j.rse.2011.01.008 Google Scholar
40. Imhoff, M. L., "Radar backscatter/biomass saturation: Observations and implications for global biomass assessment," Proceedings of IGARSS’93, IEEE International Geoscience and Remote Sensing Symposium, 43-45, IEEE, 1993.
doi:10.1109/IGARSS.1993.322465 Google Scholar
41. Carreiras, J. M., M. J. Vasconcelos, and R. M. Lucas, "Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa)," Remote Sensing of Environment, Vol. 121, 426-442, 2012.
doi:10.1016/j.rse.2012.02.012 Google Scholar
42. Næsset, E., "Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia," Scandinavian Journal of Forest Research, Vol. 22, No. 5, 433-442, 2007.
doi:10.1080/02827580701672147 Google Scholar
43. Dobson, M. C., F. T. Ulaby, T. LeToan, et al. "Dependence of radar backscatter on coniferous forest biomass," IEEE Transactions on Geoscience and remote Sensing, Vol. 30, No. 2, 412-415, 1992.
doi:10.1109/36.134090 Google Scholar
44. Le Toan, T., S. Quegan, M. Davidson, et al. "The biomass mission: Mapping global forest biomass to better understand the terrestrial carbon cycle," Remote Sensing of Environment, Vol. 115, No. 11, 2850-2860, 2011.
doi:10.1016/j.rse.2011.03.020 Google Scholar
45. Van Con, T., N. T. Thang, C. C. Khiem, et al. "Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam," Forest Ecology and Management,, Vol. 310, 213-218, 2013.
doi:10.1016/j.foreco.2013.08.034 Google Scholar
46. Li, S., J. Su, X. Lang, et al. "Positive relationship between species richness and aboveground biomass across forest strata in a primary Pinus kesiya forest," Scientific Reports, Vol. 8, No. 1, 2227, 2018.
doi:10.1038/s41598-018-20165-y Google Scholar
47. Dossa, G. G., E. Paudel, J. Fujinuma, et al. "Factors determining forest diversity and biomass on a tropical volcano, Mount Rinjani, Lombok, Indonesia," PloS One, Vol. 8, No. 7, 67720, 2013.
doi:10.1371/journal.pone.0067720 Google Scholar
48. Li, S., X. Lang, W. Liu, et al. "The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, Southwestern China," PloS One, Vol. 13, No. 1, 0191140, 2018. Google Scholar
49. Day, M., C. Baldauf, E. Rutishauser, et al. "Relationships between tree species diversity and above-ground biomass in central African rainforests: Implications for REDD," Environmental Conservation, Vol. 41, No. 1, 64-72, 2014.
doi:10.1017/S0376892913000295 Google Scholar
50. Lucas, R., J. Armston, R. Fairfax, et al. "An evaluation of the alos palsar L-band backscatter --- above ground biomass relationship queensland, australia: Impacts of surface moisture condition and vegetation structure," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 3, No. 4, 576-593, 2010.
doi:10.1109/JSTARS.2010.2086436 Google Scholar
51. Miyamoto, K., J. S. Rahajoe, T. Kohyama, et al. "Forest structure and primary productivity in a bornean heath forest," Biotropica, Vol. 39, No. 1, 35-42, 2007.
doi:10.1111/j.1744-7429.2006.00231.x Google Scholar
52. Chave, J., M. Réjou-Méchain, A. Búrquez, et al. "Improved allometric models to estimate the aboveground biomass of tropical trees," Global Change Biology, Vol. 20, No. 10, 3177-3190, 2014.
doi:10.1111/gcb.12629 Google Scholar