1. White, H., P. March, J. Lawrence, J. Vera, A. Sylvester, D. Brady, and P. Bailey, "Measurement of impulsive thrust from a closed radio-frequency cavity in vacuum," Journal of Propulsion and Power, Vol. 33, 83084, Jul. 2017. Google Scholar
2. Kößling, M., M. Monette, M. Weikert, and M. Tajmar, "The SpaceDrive project --- Thrust balance development and new measurements of the mach-effect and emdrive thrusters," Acta Astronautica, Vol. 161, 139152, Aug. 2019.
doi:10.1016/j.actaastro.2019.05.020 Google Scholar
3. Tajmar, M. and G. Fiedler, "Direct thrust measurements of an emdrive and evaluation of possible side-effects," 51st AIAA/SAE/ASEE Joint Propulsion Conference, 4083, 2015. Google Scholar
4. McCulloch, M. E., "Can the emdrive be explained by quantised inertia?," Progress in Physics, Vol. 11, No. 1, 78-80, 2015. Google Scholar
5. McCulloch, M. E., "Propellant-less propulsion from quantised inertia," J. of Space Exploration, https://www.researchgate.net/publication/329754104 Propellantless Propulsion from Quantised_Inertia, 2018. Google Scholar
6. McDonald, M. S., M. W. Nurnberger, and L. T. Williams, "Preparations for thrust measurement and error discussion of the impulse resonant microwave cavity," Journal of the British Interplanetary Society, Vol. 70, 415-424, 2017. Google Scholar
7. Fetta, G. P., "Numerical and experimental results for a novel propulsion technology requiring no on-board propellant," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, Jul. 2014. Google Scholar
8. McDonald, K. T., "Electromagnetic self-force on a hemispherical cavity,", http://www.physics.princeton.edu/∼mcdonald/examples/hemisphere.pdf, 2016. Google Scholar