1. Gao, S., K. Clark, M. Unwin, J. Zackrisson, W. A. Shiroma, J. M. Akagi, K. Maynard, P. Garner, L. Boccia, G. Amendola, G. Massa, C. Underwood, M. Brenchley, M. Pointer, and M. N. Sweeting, "Antennas for modern small satellites," IEEE Antennas Propag. Mag., Vol. 51, No. 4, 40-56, 2009.
doi:10.1109/MAP.2009.5338683 Google Scholar
2. Rodriguez-Osorio, R. M. and E. F. Ramirez, "A hands-on education project: Antenna design for inter-CubeSat communications," IEEE Antennas Propag. Mag., Vol. 54, No. 5, 211-224, Oct. 201.
doi:10.1109/MAP.2012.6348155 Google Scholar
3. Rahmat-Samii, Y., V. Manohar, and J. M. Kovitz, "For satellites, think small, dream big," IEEE Antennas Propag. Mag., Vol. 59, No. 2, 22-30, Apr. 2017.
doi:10.1109/MAP.2017.2655582 Google Scholar
4. Gao, S., Y. Rahmat-Samii, R. E. Hodges, and X. Yang, "Advanced antennas for small satellites," IEEE Proc., Vol. 106, No. 3, 391-403, Mar. 2018.
doi:10.1109/JPROC.2018.2804664 Google Scholar
5. Babuscia, A., T. Choi, J. Sauder, A. Chandra, and J. Thangavelautham, "Inflatable antenna for CubeSats: Development of the X-band prototype," Proc. IEEE Aerosp. Conf., 1-11, Big Sky, MT, USA, Mar. 2016. Google Scholar
6. Babuscia, A., J. Sauder, A. Chandra, J. Thangavelautham, L. Feruglio, and N. Bienert, "Inflatable antenna for CubeSat: A new spherical design for increased X-band gain," Conf., 1-10, Big Sky, MT, USA, Mar. 2017. Google Scholar
7. Hodges, R. E., N. Chahat, D. J. Hoppe, and D. Vacchione, "A deployable high-gain antenna bound for Mars: Developing a new folded-panel reflectarray for the first CubeSat mission to Mars," IEEE Antennas Propag. Mag., Vol. 59, No. 2, 39-49, Apr. 2017.
doi:10.1109/MAP.2017.2655561 Google Scholar
8. Tubbal, F., R. Raad, and K. Chin, "A survey and study of planar antennas for pico-satellites," IEEE Access, Vol. 3, 2590-2612, 2015.
doi:10.1109/ACCESS.2015.2506577 Google Scholar
9. Altunc, S., O. Kegege, S. Bundick, H. Shaw, S. Shaire, G. Bussey, G. Crum, J. C. Burke, S. Palo, and D. O’Conor, "X-band CubeSat communication system demonstration," 29th Annual AIAA/USU Conference Small Satellite, Logant, UT, USA, Aug. 2015. Google Scholar
10. Lehmensiek, R., "Design of a wideband circularly polarized 2 × 2 array with shorted annular patches at X-band on a CubeSat," 2017 International Symposium on Antennas and Propagation, Phuket, Thailand, 2017. Google Scholar
11. Hu, Y., W. Ding, and W. Cao, "Broadband circularly polarized microstrip antenna array using sequentially rotated technique," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1358-1361, 2011. Google Scholar
12. Garcia-Aguilar, A., J. M. Inclan-Alonso, L. Vigil-Herrero, J. M. Fernandez-Gonzalez, and M. Sierra-Perez, "Low-profile dual circularly polarized antenna array for satellite communications in the X band," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2276-2284, May 2012.
doi:10.1109/TAP.2012.2189729 Google Scholar
13. Maddio, S., "A compact two-level sequentially rotated circularly polarized antenna array for C-band applications," Int. J. of Antennas Propag., Vol. 2015, Art. ID 830920, Oct. 2015. Google Scholar
14. Castro, A. T. and S. K. Sharma, "Inkjet printed wideband circularly polarized microstrip patch array antenna on a PET film flexible substrate material," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 1, 176-179, 2018.
doi:10.1109/LAWP.2017.2779440 Google Scholar
15. Ta, S. X. and I. Park, "Low-profile broadband circularly polarized patch antenna using metasurface," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5929-5934, Dec. 2015.
doi:10.1109/TAP.2015.2487993 Google Scholar
16. Luo, Q., F. Zhu, and S. Gao, Circularly Polarized Antennas, 6, Wiley (UK)-IEEE Press (USA), Jan. 2014.
doi:10.1002/9781118790526
17. Evans, H., P. Gale, B. Aljibouri, E. Lim, E. Korolkeiwicz, and A. Sambell, "Application of simulated annealing to design of serial feed sequentially rotated 2 × 2 antenna array," Electron. Lett., Vol. 36, No. 24, 1987-1988, Nov. 2000.
doi:10.1049/el:20001407 Google Scholar