1. Reddy, G. S., A. Kamma, S. Kharche, J. Mukherjee, and S. K. Mishra, "Cross-configured directional uwb antennas for multidirectional pattern diversity characteristics," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 853-858, Feb. 2015.
doi:10.1109/TAP.2014.2382687 Google Scholar
2. Sharma, Y., D. Sarkar, K. Saurav, and K. V. Srivastava, "Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1163-1166, 2017.
doi:10.1109/LAWP.2016.2626394 Google Scholar
3. Wang, H., L. Liu, Z. Zhang, Y. Li, and Z. Feng, "Ultra-compact three-port mimo antenna with high isolation and directional radiation patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1545-1548, 2014.
doi:10.1109/LAWP.2014.2344104 Google Scholar
4. Cui, L., W. Wu, and D. Fang, "Wideband circular patch antenna for pattern diversity application," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1298-1301, 2015.
doi:10.1109/LAWP.2015.2403358 Google Scholar
5. Sun, L., G. Zhang, B. Sun, W. Tang, and J. Yuan, "A single patch antenna with broadside and conical radiation patterns for 3g/4g pattern diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 433-436, 2016.
doi:10.1109/LAWP.2015.2451132 Google Scholar
6. Saurav, K., N. K. Mallat, and Y. M. M. Antar, "A three-port polarization and pattern diversity ring antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1324-1328, Jul. 2018.
doi:10.1109/LAWP.2018.2844170 Google Scholar
7. Chacko, B. P., G. Augustin, and T. A. Denidni, "FPC antennas: C-band point-to-point communication systems," IEEE Antennas and Propagation Magazine, Vol. 58, No. 1, 56-64, Feb. 2016.
doi:10.1109/MAP.2015.2501240 Google Scholar
8. Sultan, F. and S. S. I. Mitu, "Superstrate-based beam scanning of a Fabry-Perot cavity antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1187-1190, 2016.
doi:10.1109/LAWP.2015.2499261 Google Scholar
9. Xie, P., G. Wang, H. Li, and J. Liang, "A dual-polarized two-dimensional beam-steering Fabry-Pérot cavity antenna with a reconfigurable partially reflecting surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2370-2374, 2017.
doi:10.1109/LAWP.2017.2718567 Google Scholar
10. Liu, Z., Z. Cao, and L. Wu, "Compact low-profile circularly polarized Fabry-Perot resonator antenna fed by linearly polarized microstrip patch," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 524-527, 2016.
doi:10.1109/LAWP.2015.2456886 Google Scholar
11. Costa, F., D. Bianchi, A. Monorchio, and G. Manara, "Linear Fabry-Perot/leaky-wave antennas excited by multiple sources," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5150-5159, Oct. 2018.
doi:10.1109/TAP.2018.2860038 Google Scholar
12. Pan, W., C. Huang, P. Chen, X. Ma, C. Hu, and X. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 945-949, Feb. 2014.
doi:10.1109/TAP.2013.2291008 Google Scholar
13. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926 Google Scholar
14. Ren, J., W. Jiang, K. Zhang, and S. Gong, "A high-gain circularly polarized Fabry-Perot antenna with wideband low-rcs property," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 853-856, May 2018.
doi:10.1109/LAWP.2018.2820015 Google Scholar
15. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially re ective surfaces for broadband Fabry-Perot cavity antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3474-3481, Jul. 2014.
doi:10.1109/TAP.2014.2320755 Google Scholar
16. Zheng, Y., J. Gao, Y. Zhou, X. Cao, H. Yang, S. Li, and T. Li, "Wideband gain enhancement and rcs reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 590-599, Feb. 2018.
doi:10.1109/TAP.2017.2780896 Google Scholar
17. Guzmán-Quirós, R., A. R. Weily, J. L. Gómez-Tornero, and Y. J. Guo, "A Fabry-Pérot antenna with two-dimensional electronic beam scanning," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1536-1541, Apr. 2016.
doi:10.1109/TAP.2016.2525832 Google Scholar
18. Cisco Aironet 2800 Series Access Points, Cisco, , 2, 2019. Google Scholar
19. Wang, H., L. Liu, Z. Zhang, and Z. Feng, "Wideband tri-port mimo antenna with compact size and directional radiation pattern," Electronics Letters, Vol. 50, No. 18, 1261-1262, Aug. 2014.
doi:10.1049/el.2014.2291 Google Scholar
20. Kim, J. H., C. Ahn, and J. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1164-1167, Mar. 2016.
doi:10.1109/TAP.2016.2518650 Google Scholar
21. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband fabry-perot resonator antenna with two complementary FSS layers," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2463-2471, May 2014.
doi:10.1109/TAP.2014.2308533 Google Scholar
22. Li, H., G. Wang, T. Cai, J. Liang, and X. Gao, "Phase- and amplitude-control metasurfaces for antenna main-lobe and sidelobe manipulations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5121-5129, Oct. 2018.
doi:10.1109/TAP.2018.2858181 Google Scholar
23. Mao, C., Y. Yang, X. He, J. Zheng, and T. Liu, "Design of high-gain dual-band dual-circular-polarised antenna using reflective metasurface," Electronics Letters, Vol. 53, No. 22, 1448-1450, 2017.
doi:10.1049/el.2017.2479 Google Scholar
24. Aziz, R. S., T. Kim, J. Park, Y. Ryu, and S. Park, "EM lens design using thin planar metasurfaces for high antenna gain and low sll applications," IET Microwaves, Antennas Propagation, Vol. 13, No. 7, 950-958, 2019.
doi:10.1049/iet-map.2018.5671 Google Scholar
25. Chen, Q. and H. Zhang, "High-gain circularly polarized Fabry-Pérot patch array antenna with wideband low-radar-cross-section propert," IEEE Access, Vol. 7, 8885-8889, 2019.
doi:10.1109/ACCESS.2018.2890691 Google Scholar