1. Commission of the European Communities, Staff Working Document, "Exploiting the employment potential of ICTs,", Apr. 2012.
doi:10.1109/MCOM.2014.6736752 Google Scholar
2. Wang, C.-X., F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. M. Ggoune, H. Haas, S. Fletcher, and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, Vol. 52, No. 2, 122-130, Feb. 2014.
doi:10.1109/JPROC.2012.2186214 Google Scholar
3. Ying, Z., "Antennas in cellular phones for mobile communications," Proceedings of the IEEE, Vol. 100, No. 7, 2286-2296, Jul. 2012.
doi:10.1109/MCOM.2014.6736752 Google Scholar
4. Wang, C.-X., F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," Communications Magazine, Vol. 52, No. 2, 122, 130, IEEE, Feb. 2014.
doi:10.1109/MCOM.2014.6894452 Google Scholar
5. Elkashlan, M., T. Q. Duong, and H.-H. Chen, "Millimeter-wave communications for 5G: Fundamentals: Part I [Guest Editorial]," IEEE Communications Magazine, Vol. 52, No. 9, 52-54, 2014. Google Scholar
6. Ali, M. M. M., O. Haraz, S. Alshebeili, and A. R. Sebak, "Broadband printed slot antenna for the fifth generation (5G) mobile and wireless communications," 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-2, Montreal, QC, 2016. Google Scholar
7. Parchin, N. O., M. Shen, and G. F. Pedersen, "End-fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications," IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, Nanjing, 2016. Google Scholar
8. El-Bacha, A. and R. Sarkis, "Design of tilted taper slot antenna for 5G base station antenna circular array," 2016 IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-4, Beirut, 2016.
doi:10.1109/MCOM.2014.6894454 Google Scholar
9. Hong, W., K. H. Baek, Y. Lee, Y. Kim, and S. T. Ko, "Study and prototyping of practically large-scale mm Wave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, Sep. 2014.
doi:10.1109/ICUFN.2017.7993764 Google Scholar
10. Al-Falajy, N. and O. Y. K. Alani, "Design considerations of ultra dense 5G network in millimeter wave band," 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), 141-146, 2017.
doi:10.1109/APS.2015.7305610 Google Scholar
11. Outerelo, D. A., A. V. Alejos, M. G. Sanchez, and M. V. Isasa, "Microstrip antenna for 5G broadband communication: Overview of design issues," 2015 IEEEinternational Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2443-2444, 2015.
doi:10.1109/ICMIM.2017.7918846 Google Scholar
12. Ahmad, W. and W. T. Khan, "Small form factor dual band (28/38 GHz) PIFA antenna for 5G applications," 2017 IEEE MTTS International Conference on micromaves for Intelligent Mobility (ICMIM), 21-24, 2017. Google Scholar
13. Wu, T.-Y. and T. Chang, "Interference reduction by millimeter wave technology for 5G based green communications ," IEEE Journals & Magazines, Vol. 4, 10228-10234, 2016.
doi:10.1109/ICETEESES.2016.7581361 Google Scholar
14. Rouy, P., R. K, Vishwakarma, A. Jain, and R. Singh, "Multiband millimeter wave antenna array for 5G communication," 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), 102-105, 2016.
doi:10.1109/TAP.2010.2046861 Google Scholar
15. Chen, X.-P., K. Wu, L. Han, and F. He, "Low-cost high planar antenna array for 60-GHz band applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2126-2129, Jun. 2010.
doi:10.1109/TAP.2011.2123058 Google Scholar
16. Biglarbegian, B., M. Fakharzadeh, D. Busuioc, M.-R. N. Ahmadi, and S. S. Naeini, "Optimized micro strip antenna arrays for emerging millimeter wave wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1742-1747, May 2011.
doi:10.1109/TAP.2012.2220331 Google Scholar
17. Wang, L., Y.-X. Guo, and W.-X. Sheng, "Wideband high-gain 60-GHz LTCCL probe patch antenna array with a soft surface," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1802-1809, Apr. 2013.
doi:10.1109/TAP.2014.2311994 Google Scholar
18. Li, M. and K.-M. Luk, "Low-cost wideband micro strip antenna array for 60-GHz applications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3012-3018, Jun. 2014. Google Scholar
19. Balanis, C. A., Antenna Theory Analysis and Design, Wiley & Sons Ltd, New Jersy, 2005.
20. Huang, Y. and K. Boyle, Antennas from Theory to Practice, Wiley & Sons Ltd, West Sussex, 2008.
21. Khan, M., S. U. Rahman, M. K. Khan, and M. Saleem, "A dual notched band printed monopole antenna for ultra-wide band applications," 2016 Progress In Electromagnetic Research Symposium (PIERS), Shanghai, China, Aug. 8-11, 2016. Google Scholar
22. Rahman, S. U., M. I. Khan, N. Akhtar, and F. Murad, "Planar dipole antenna for tri-band PCS and WLAN communications," Progress In Electromagnetic Research Symposium (PIERS), Shanghai, China, Aug. 8-11, 2016. Google Scholar
23. Ali, M. M. M. and A.-R. Sebak, "Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications," 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2016. Google Scholar
24. Saini, J. and S. K. Agarwal, "Design a single band microstrip patch antenna at 60 GHz millimeter wave for 5G applications," 2017 International Conference on Computer, Communications and Electronics (Comptelix), 227-230, IEEE Conference Publications, 2017. Google Scholar
25. Haraz, O. M., A. Elboushi, S. A. Alshebeili, and A. Sebak, "Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks," Access, Vol. 2, 909, 913, IEEE, 2014. Google Scholar
26. Haraz, O. M., A. Elboushi, and A.-R. Sebak, "New dense dielectric patch array antenna for future 5G short-range communications," The 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM 2014), Victoria, Canada, Jul. 13-17, 2014. Google Scholar
27. Ali, M. M. M., O. M. Haraz, S. Alshebeili, and A.-R. Sebak, "Design of broadband and dual-band printed slot antennas for the fifth generation (5G) mobile and wireless communications," 32nd National Radio Science Conference NRSC 2015, Egypt, Oct. 6, 2015.
doi:10.1109/74.706069 Google Scholar
28. Petosa, A., A. Ittipiboon, Y. M. M. Antar, and D. Roscoe, "Recent advances in dielectric resonator antenna technology," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 35-48, Jun. 1998. Google Scholar
29. Diao, Y., M. Su, Y. Liu, S. Li, and W. Wang, "Compact and multiband dielectric resonator antenna for mobile terminals," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Jul. 2015. Google Scholar
30. Embong, N. and M. F. Mansor, "Multiband Dielectric Resonator Antenna (DRA) for Long Term Evolution Advanced (LTE-A) handheld devices," International Conference on Space Science and Communication (IconSpace), Aug. 2015. Google Scholar
31. Jamaluddin, M. H., N. A. Mohammad, and S. Z. Naqiyah, "Size reduction of MIMO dielectric resonator antenna for LTE application," IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Dec. 2016. Google Scholar
32. Sher, C., Z. Chen, J. Yu, Y. Yao, L. Qi, and X. Chen, "A gain enhanced dielectric resonator antenna covering 62–78 GHz band for 5G," International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 2018. Google Scholar
33. Sharma, A., A. Sarkar, M. Adhikary, A. Biswas, and M. J. Akhtar, "SIWfed MIMO DRA for future 5G applications," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Jul. 2017. Google Scholar
34. Ashikin Jaafar, N., M. H. Jamaluddin, J. Nasir, and N. M. Noor, "H-shaped dielectric resonator antenna for future 5G application," IEEE International RF and Microwave Conference (RFM 2015), 14-16, Dec. 2015.
doi:10.1109/TAP.2009.2029292 Google Scholar
35. Perron, A., T. A. Denidni, and A.-R. Sebak, "High-gain hybriddielectric resonator antenna for millimeter-wave applications: Design and implementation," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2882-2892, 2009. Google Scholar
36. Erfani, E., T. Denidni, S. Tatu, and M. Niroo-Jazi, "A broadband and high gain millimeter-wave hybrid dielectric resonator antenna," Proceedings of the 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM’16), 1-2, IEEE, Montreal, Canada, Jul. 2016.
doi:10.1109/TAP.2010.2046852 Google Scholar
37. Lai, Q., C. Fumeaux, W. Hong, and R. Vahldieck, "60 GHz aperture-coupled dielectric resonator antennas fed by a halfmode substrate integrated waveguide," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 1856-1864, 2010. Google Scholar
38. Coulibaly, Y., M. Nedil, I. Ben Mabrouk, L. Talbi, and T. A. Denidni, "High gain rectangular dielectric resonator for broadband millimeter-waves underground communications," Proceedings of the 24th Canadian Conference on Electrical and Computer Engineering (CCECE’11), 001088-001091, IEEE, Ontario, Canada, May 2011. Google Scholar
39. Coulibaly, Y., M. Nedil, L. Talbi, and T. A. Denidni, "Design of high gain and broadband antennas at 60GHz for underground communications systems," International Journal of Antennas and Propagation, Vol. 2012, Article ID 386846, 7 pages, 2012.
doi:10.1109/TAP.2013.2262667 Google Scholar
40. Al-Hasan, M. J., T. A. Denidni, and A. R. Sebak, "Millimeter-wave EBG-based aperture-coupled dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4354-4357, 2013. Google Scholar
41. Karimian, R., A. Kesavan, M. Nedil, and T. A. Denidni, "Low mutual coupling 60-GHz MIMO antenna system with frequency selective surface wall," IEEE Antennas and Wireless Propagation Letters, 2016. Google Scholar
42. Bijumon, P. V., Y. M. M. Antar, A. P. Freundorfer, and M. Sayer, "Integrated dielectric resonator antennas for system on-chip applications," Proceedings of the International Conference on Microelectronics (ICM’07), 275-278, IEEE, Cairo, Egypt, Dec. 2007. Google Scholar
43. Allabouche, K., V. Bobrovs, F. Fererro, L. Lizzi, J.-M. Ribero, N. El Amrani El Idrissi, M. Jorio, and M. Elbakali, "Multiband rectangular dielectric resonator antenna for 5G applications," International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 2017. Google Scholar
44. McAllister, M. W., S. A. Long, and G. L. Conway, "Rectangular dielectric resonator antenna," Proceedings of the International Symposium Digest --- Antennas and Propagation, Vol. 21, 696-699, May 1983.
doi:10.1109/8.247779 Google Scholar
45. Leung, K. W., K. M. Luk, K. Y. A. Lai, and D. Lin, "Theory and experiment of a coaxial probe fed hemispherical dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 10, 1390-1398, 1993. Google Scholar