Vol. 98
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-01-17
Research on Spaceborne SAR HRWS-GMTI Imaging Method Based on Relax Algorithm
By
Progress In Electromagnetics Research C, Vol. 98, 257-268, 2020
Abstract
High resolution wide swath (HRWS) imaging and ground moving target indication (GMTI) are similar in terms of system architecture and are based on a multi-channel system in the azimuth direction. However, in order to achieve their respective performance requirements, the HRWS SAR requires a lower pulse repetition frequency (PRF), and the GMTI system requires a relatively higher PRF. In consideration of this contradiction, the parameters of the moving target are introduced into the reconstructed filtering vector constructed by each signal reconstruction algorithm, so that the HRWS imaging of the moving target can be realized. In this paper, considering the characteristics of the Relax algorithm, a motion-adapted signal reconstruction algorithm is proposed, and the iterative process of the new method is described in detail. This method can perform GMTI on moving targets with a lower PRF without changing the PRF of the HRWS SAR system. By the simulation of point target echo, and comparing with the traditional signal reconstruction algorithms, the reliability and effectiveness of the new method are verified.
Citation
Jin-Meng Wang Xudong Wang Shi-Yu Meng Jun-Jie Ma , "Research on Spaceborne SAR HRWS-GMTI Imaging Method Based on Relax Algorithm," Progress In Electromagnetics Research C, Vol. 98, 257-268, 2020.
doi:10.2528/PIERC19110201
http://www.jpier.org/PIERC/pier.php?paper=19110201
References

1. Moreira, A., "A golden age for spaceborne SAR systems," Proceedings of the 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), 1-4, Gdansk, Poland, 2014, [doi: 10.1109/MIKON.2014.6899903].

2. Li, C. S., W. Yang, and P. B. Wang, "A review of spaceborne SAR algorithm for image formation," Journal of Radar, Vol. 2, 111-122, 2013, [doi: 2095-283X(2013)01-0111-12].
doi:10.3724/SP.J.1300.2013.20071

3. Liu, X. N., "Key technologies in on-board real-time imaging processing for spaceborne SAR,", Ph. D Thesis, Beijing Institute of Technology, Beijing, China, 2016.
doi:10.3724/SP.J.1300.2013.20071

4. Suess, M., B. Grafmueler, and R. Zahn, "A novel high resolution, wide swath SAR system," Proceedings of IEEE 2001 International Geoscience and Remote Sensing Symposium, 1013-1015, Sydney, NSW, Australia, 2001, [doi: 10.1109/IGARSS.2001.976731].

5. Heer, C., F. Soualle, and R. Zahn, "Investigations on a new high resolution wide swath SAR concept," Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, July 21-25, 2003, [doi: 10.1109/IGARSS.2003.1293829].

6. Deng, Y. K., W. D. Yu, and Y. Wang, "Ocean surveillance and information extraction based on HRWS spaceborne SAR system," Science and Technology Review, Vol. 35, 69-76, 2017, [doi:10.3981/j.issn.1000-7857.2017.20.007].

7. Yang, T. L., "Study on spaceborne multi-channel high resolution and wide swath SAR imaging,", Ph. D Thesis, Xi’an University of Electronic Science and Technology, Xi’an, China, 2014.

8. Buford, R. J. and W. R. John, "A multiple beam synthetic aperture radar design concept for geoscience applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 21, 201-207, 1983, [doi: 10.1109/TGRS.1983.350489].

9. Gerhard, K., G. Nicolas, and M. Alberto, "Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, 31-46, 2007, [doi: 10.1109/TGRS.2007.905974].

10. Krieger, G. and A. Moreira, "Potentials of digital beamforming in bi- and multistatic SAR," Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, July 21-25, 2003, [doi: 10.1109/IGARSS.2003.1293831].

11. Krieger, G., N. Gebert, and A. Moreira, "SAR signal reconstruction from non-uniform displaced phase centre sampling," Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, September 20-24, 2004, [doi: 10.1109/IGARSS.2004.1370674].

12. Wang, Y. K. and T. Wang, "Efficient imaging algorithm for spaceborne synthetic aperture radar/ground moving target indication systems," IET Radar, Sonar & Navigation, Vol. 9, 1354-1359, 2015, [doi: 10.1049/iet-rsn.2014.0289].
doi:10.1049/iet-rsn.2014.0289

13. Chen, Q., "Research on the new system of high resolution and wide swath spaceborne SAR,", Ph. D Thesis, University of Chinese Academy of Sciences, Beijing, China, 2013.

14. Delphine, C. M., S. Ishuwa, and K. Jens, "MIMO SAR processing for multichannel high-resolution wide-swath radars," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, 5034-5055, 2014, doi: 10.1109/TGRS.2013.2286520.
doi:10.1109/TGRS.2013.2286520

15. Lightstone, H., D. Faubert, and G. Rempel, "Multiple phase centre DPCA for airborne radar," Proceedings of the 1991 IEEE National Radar Conference, Los Angeles, CA, USA, March 12-13, 1991, [doi: 10.1109/NRC.1991.114720].

16. Joachim, H. G. E., H. G. Christoph, and C. M. Delphine, "Improved spacebased moving target indication via alternate transmission and receiver switching," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, 3960-3974, [doi: 10.1109/TGRS.2008.2002266], 2008.

17. Chiu, S. and M. V. Dragosevic, "Moving target indication via RADARSAT-2 multichannel synthetic aperture radar processing," EURASIP Journal on Advances in Signal Processing, 2009, 1-19, 2010, [doi: https://doi.org/10.1155/2010/740130].

18. Zhang, Y. Q., "Super-resolution passive ISAR imaging via the RELAX algorithm," Proceedings of Computational Intelligence and Design (ISCID), Hangzhou, China, December 10-11, 2016, [doi: 10.1109/ISCID.2016.2024].

19. Yan, H., D. Y. Zhu, and J. D. Zhang, "Clutter suppression and parameter estimation method in WAS-GMTI mode based on relax algorithm," Journal of Electronics & Information Technology, Vol. 38, 3042-3048, 2016, [doi: 10.11999/JEIT160859].