1. Lin, W. and H. Wang, "Polarization reconfigurable circular patch antenna with multiple l-probes for biomedical applications," IEEE International Symposium on Antennas and Propagation (APSURSI), Jul. 2016, ISSN: 1947-1491. Google Scholar
2. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Communications, ArtechHouse, London and Boston, 2006.
doi:10.1109/EUCAP.2006.4584864
3. Kaur, G., A. Kaur, G. K. Toor, B. S. Dhaliwal, and S. S. Pattnaik, "Antennas for biomedical applications," Biomedical Engineering Letters, Vol. 5, No. 3, 203-212, Sept. 2015.
doi:10.1007/s13534-015-0193-z Google Scholar
4. Sabban, A., "New wideband printed antennas for medical applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 84-91, Jan. 2013.
doi:10.1109/TAP.2012.2214993 Google Scholar
5. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.
6. Ali, J. K., M. T. Yassen, M. R. Hussan, and A. J. Salim, "A printed fractal based slot antenna for multiband wireless communication applications," Proceedings of PIERS, 618-622, Moscow, Russia, Aug. 19-23, 2012. Google Scholar
7. Oraizi, H. and S. Hedayati, "Circularly polarized multiband microstrip antenna using square and giuseppe peano fractals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3466-3470, Jul. 2012.
doi:10.1109/TAP.2012.2196912 Google Scholar
8. Sundaram, A., M. Maddela, and R. Ramadoss, "Koch-Fractal folded-slot antenna characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 219-222, Apr. 2007.
doi:10.1109/LAWP.2007.895293 Google Scholar
9. Oraizi, H. and S. Hedayati, "Combined fractal geometries for the design of wide band microstrip antennas with circular polarization," PIERS Proceedings, 1262-1267, Suzhou, China, Sept. 12-16, 2011. Google Scholar
10. Sharma, N., V. Sharma, and S. S. Bhatia, "A novel hybrid fractal antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 73, 25-35, 2018. Google Scholar
11. Dhaliwal, B. S. and S. S. Pattnaik, "BFO-ANN ensemble hybrid algorithm to design compact fractal antenna for rectenna system," International Journal on Neural Computing and Applications, Vol. 28, No. 1, 917-928, Dec. 2017.
doi:10.1007/s00521-016-2402-9 Google Scholar
12. Singh, S. and B. S. Dhaliwal, "Analysis of hybrid fractal antenna using artificial neural network," International Conference on Soft Computing in Wireless Communication (SCAWC 2017), 219-222, Mar. 9-11, 2017. Google Scholar
13. Kaur, K. and J. S. Sivia, "“A compact hybrid multiband antenna for wireless applications," International Journal on Wireless Personal Communications, Vol. 97, No. 4, 5917-5927, Dec. 2017.
doi:10.1007/s11277-017-4818-7 Google Scholar
14. Sharma, N. and S. S. Bhatia, "Split ring resonator based multiband hybrid fractal antennas for wireless applications," International Journal of Electronics and Communications, Vol. 93, 39-52, Sept. 2018.
doi:10.1016/j.aeue.2018.05.035 Google Scholar
15. Bangi, I. K. and J. S. Sivia, "Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications," International Journal of Electronics and Communications, Vol. 85, 159-168, Feb. 2018.
doi:10.1016/j.aeue.2018.01.005 Google Scholar
16. Brar, A. S., J. S. Sivia, and G. Bharti, "A compact hybrid Minkowski fractal antenna for C and X-band applications," International Journal of Computer Science and Information Security (IJCSIS), Vol. 14, No. 12, 349-352, Dec. 2016. Google Scholar
17. Saputro, S. A. and J. Y. Chung, "Hilbert curve fractal antenna for dual on- and off-body communication," Progress In Electromagnetics Research Letters, Vol. 58, 81-88, 2016.
doi:10.2528/PIERL15111107 Google Scholar
18. Choukiker, Y. K. and S. K. Behera, "Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics," IET Microwaves, Antennas & Propagation, Vol. 8, No. 7, 506-512, May 2014.
doi:10.1049/iet-map.2013.0235 Google Scholar
19. Li, Y., X. Yang, C. Liu, and T. Jiang, "Miniaturization cantor set fractal ultrawideband antenna with a notch band characteristic," Microwave and Optical Technology Letters, Vol. 54, No. 5, 1227-1230, Mar. 2017.
doi:10.1002/mop.26762 Google Scholar
20. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Analysis and design of circular fractal antenna using artificial neural networks," Progress In Electromagnetics Research B, Vol. 56, 251-267, 2013.
doi:10.2528/PIERB13091611 Google Scholar
21. Salim, M. and A. Pourziad, "A novel reconfigurable spiral-shaped monopole antenna for biomedical applications," Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015.
doi:10.2528/PIERL15083103 Google Scholar
22. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giuseppe Peano and Sierpinski Carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, Jan. 201. Google Scholar
23. Choukiker, Y. K. and S. K. Behera, "Design of wideband fractal antenna with combination of fractal geometries," International Conference on Information, Communications and Signal Processing, Singapore, Dec. 13-16, 2011. Google Scholar
24. Oraizi, H. and S. Hedayati, "Circularly polarized multiband microstrip antenna using square and Giuseppe Peano fractals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3466-3470, Jul. 201.
doi:10.1109/TAP.2012.2196912 Google Scholar
25. Sukhija, S. and R. K. Sarin, "A U-shaped meandered slot antenna for biomedical applications," Progress In Electromagnetics Research M, Vol. 62, 65-77, 2017.
doi:10.2528/PIERM17082101 Google Scholar
26. Kaur, M. and J. S. Sivia, "ANN-based design of hybrid fractal antenna for biomedical applications," International Journal of Electronics, Vol. 106, No. 8, 1184-1199, Mar. 2019.
doi:10.1080/00207217.2019.1582712 Google Scholar
27. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Neurocomputational models for parameter estimation of circular microstrip patch antennas," Procedia Computer Science, Vol. 85, 393-400, Dec. 2016.
doi:10.1016/j.procs.2016.05.178 Google Scholar
28. Feiz, N., F. Mohajeri, and D. Zarifi, "Design, simulation and fabrication of an optimized microstrip antenna with metamaterial superstrate using particle swarm optimization ," Progress In Electromagnetics Research M, Vol. 36, 101-108, May 2014.
doi:10.2528/PIERM14010202 Google Scholar
29. Zaman, M. A. and M. A. Matin, "Nonuniformly spaced linear antenna array design using firefly algorithm," International Journal of Microwave Science and Technology, Vol. 2012, 1-8, Jan. 2012.
doi:10.1155/2012/256759 Google Scholar
30. Mohammed, H. J., A. S. Abdullah, R. S. Ali, R. A. Abd-Alhameed, Y. I. Abdulraheem, and J. M. Noras, "Design of a unipolar printed triple band-rejected ultra-wideband antenna using particle swarm optimization and the firefly algorithm," IET Microwaves, Antennas & Propagation, Vol. 10, No. 1, 31-37, 2014.
doi:10.1049/iet-map.2014.0736 Google Scholar
31. Dhaliwal, B. S. and S. S. Pattnaik, "Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design," Neural Computing and Applications, Vol. 27, No. 3, 585-592, Apr. 2016.
doi:10.1007/s00521-015-1879-y Google Scholar
32. Kaur, R. and M. Rattan, "Optimization of the return loss of differentially fed microstrip patch antenna using ANN and firefly algorithm," Wireless Personal Communications, Vol. 80, No. 4, 1547-1556, Feb. 2015.
doi:10.1007/s11277-014-2099-y Google Scholar
33. Bhushan, B. and S. S. Pillai, "Particle swarm optimization and firefly algorithm: Performance analysis," IEEE International Advances Computing Conference (IACC), 746-751, Feb. 22-23, 2013. Google Scholar
34. Kaur, M. and J. S. Sivia, "Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO," International Journal of Electronics and Communications, Vol. 99, 14-24, Feb. 2019.
doi:10.1016/j.aeue.2018.11.005 Google Scholar
35. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, London.
36. Dhaliwal, B. S. and S. S. Pattnaik, "Artificial neural network analysis of Sierpinski Gasket fractal antenna: A low-cost alternative to experimentation," Advances in Artificial Neural Systems, Vol. 2013, Article ID 560969, 7 pages, Jan. 2013. Google Scholar
37. Gil, I. and R. Fernandez-Garcia, "Wearable PIFA antenna implemented on jean substrate for wireless body area network," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 11-12, 1194-1204, 2017.
doi:10.1080/09205071.2017.1341854 Google Scholar
38. Sivanandam, S. N. and S. N. Deepa, Principles of Soft Computing, Wiley-India (P) Ltd., New Delhi, 2008.