Vol. 100
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-03-31
Dual-Layer Dual-Patch EBG Structure for Isolation Enhancement and Correlation Reduction in MIMO Antenna Arrays
By
Progress In Electromagnetics Research C, Vol. 100, 233-245, 2020
Abstract
This paper proposes a novel electromagnetic band gap (EBG) structure based on a dual-layer dual-patch unit (DLDP-EBG) cell to improve isolation and decrease envelope correlation between MIMO slot antenna array elements. A wideband MIMO slot antenna array operating in the frequency range of 4.2-6.5 GHz (43%) is deployed. The antenna array is based on slotted rectangular microstrip radiating elements printed on the top surface of two stacked FR4 substrates to widen the array impedance bandwidth. A 2 x 7 dual-layer DLDP-EBG unit cell is inserted between the array elements to reduce the mutual coupling and detect the individual beams of each antenna in opposite directions. An isolation improvement of up to 56 dB is maintained throughout the working bandwidth of the antenna, when the EBG is inserted. Also, the DLDP-EBG unit cells reduce the envelope correlation coefficient by 5-30 dB across the whole operating bandwidth by detecting the radiation beams of the individual antenna elements in opposite directions. The MIMO array gain and radiation eciency have been improved after using the EBG structure due to the reduction in mutual coupling and surface wave mitigation between the array elements. The proposed low-pro le MIMO slot antenna array is the fi rst in literature to exhibit such wideband isolation improvement, gain enhancement, and correlation reduction behavior simultaneously.
Citation
Oludayo Sokunbi, and Hussein Attia, "Dual-Layer Dual-Patch EBG Structure for Isolation Enhancement and Correlation Reduction in MIMO Antenna Arrays," Progress In Electromagnetics Research C, Vol. 100, 233-245, 2020.
doi:10.2528/PIERC19112607
References

1. Foschini, G. J., "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas," Bell Labs Technical Journal, Vol. 1, No. 2, 41-59, Autumn 1996.
doi:10.1002/bltj.2015

2. Jensen, M. A. and J. W. Wallace, "A review of antennas and propagation for mimo wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2810-2824, Nov. 2004.
doi:10.1109/TAP.2004.835272

3. Hassan, T., M. U. Khan, H. Attia, and M. S. Sharawi, "An FSS based correlation reduction technique for MIMO antennas," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4900-4905, Sep. 2018.
doi:10.1109/TAP.2018.2842256

4. Nadeem, I. and D. Choi, "Study on mutual coupling reduction technique for mimo antennas," IEEE Access, Vol. 7, 563-586, 2019.
doi:10.1109/ACCESS.2018.2885558

5. Gauthier, G. P., A. Courtay, and G. M. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, 1310-1314, Aug. 1997.
doi:10.1109/8.611252

6. Sokunbi, O., H. Attia, and S. I. Sheikh, "Microstrip antenna array with reduced mutual coupling using slotted-ring ebg structure for 5g applications," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1185-1186, Jul. 2019.

7. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

8. Sarin, V. P., N. Nassar, V. Deepu, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Wideband printed microstrip antenna for wireless communications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 779-781, 2009.
doi:10.1109/LAWP.2009.2026193

9. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 59, No. 2, 162-170, Apr. 2017.
doi:10.1109/MAP.2017.2658346

10. Li, M., B. G. Zhong, and S. W. Cheung, "Isolation enhancement for mimo patch antennas using near-field resonators as coupling-mode transducers," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 755-764, Feb. 2019.
doi:10.1109/TAP.2018.2880048

11. Zhu, Y., Y. Chen, and S. Yang, "Decoupling and low-profile design of dual-band dual-polarized base station antennas using frequency-selective surface," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5272-5281, Aug. 2019.
doi:10.1109/TAP.2019.2916730

12. Li, M., L. Jiang, and K. L. Yeung, "Novel and efficient parasitic decoupling network for closely coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3574-3585, Jun. 2019.
doi:10.1109/TAP.2019.2902656

13. Sokunbi, O. and H. Attia, "Highly reduced mutual coupling between wideband patch antenna array using multiresonance EBG structure and defective ground surface," Microwave and Optical Technology Letter, 1-10, 2019.

14. Roshna, T. K., U. Deepak, V. R. Sajitha, K. Vasudevan, and P. Mohanan, "A compact uwb mimo antenna with re ector to enhance isolation," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1873-1877, Apr. 2015.
doi:10.1109/TAP.2015.2398455

15. Rajo-Iglesias, E., O. Quevedo-Teruel, L. Inclan-Sainchez, and L.-E. Garcia-Munoz, "Design of a planar ebg structure to reduce mutual coupling in multilayer patch antennas," 2007 Loughborough Antennas and Propagation Conference, Vol. 4, No. 4, 149-152, Apr. 2007.
doi:10.1109/LAPC.2007.367453

16. Vishvaksenan, K. S., K. Mithra, R. Kalaiarasan, and K. S. Raj, "Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2146-2149, 2017.
doi:10.1109/LAWP.2017.2700521

17. Zhang, S. and G. F. Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 166-169, 2016.
doi:10.1109/LAWP.2015.2435992

18. Ghosh, J., D. Mitra, and S. Das, "Mutual coupling reduction of slot antenna array by controlling surface wave propagation," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1352-1357, Feb. 2019.
doi:10.1109/TAP.2018.2883524

19. Radhi, A. H., R. Nilavalan, Y. Wang, H. Al-Raweshidy, A. A. Eltokhy, and N. A. Aziz, "Mutual coupling reduction with a novel fractal electromagnetic bandgap structure," IET Microwaves Antennas Propagation, Vol. 13, No. 2, 134-141, 2019.
doi:10.1049/iet-map.2018.5273

20. Liu, F., J. Guo, L. Zhao, X. Shen, and Y. Yin, "A meta-surface decoupling method for two linear polarized antenna array in sub-6GHz base station applications," IEEE Access, Vol. 7, 2759-2768, 2019.
doi:10.1109/ACCESS.2018.2886641

21. Li, X., G. Yang, and Y. Jin, "Isolation enhancement of wideband vehicular antenna array using fractal decoupling structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1799-1803, Sep. 2019.
doi:10.1109/LAWP.2019.2930365

22. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, A. Hussein Ali, F. Falcone, and E. Limiti, "Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures," IET Microwaves, Antennas Propagation, Vol. 12, No. 14, 2241-2247, 2018.
doi:10.1049/iet-map.2018.5103

23. Yuan, T., H. H. Ouslimani, A. C. Priou, G. Lacotte, and G. Collignon, "Dual-layer ebg structures for low-profile “bent” monopole antennas," Progress In Electromagnetics Research B, Vol. 47, 315-337, 2013.
doi:10.2528/PIERB12110502

24. Hafezifard, R., M. Naser-Moghadasi, J. R. Mohassel, and R. A. Sadeghzadeh, "Mutual coupling reduction for two closely spaced meander line antennas using metamaterial substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 40-43, 2016.

25. Movahedinia, R., M. Niroo-jazi, M. Akbari, A. R. Sebak, and M. R. Chaharmir, "Improvement of transmit-receive array antenna isolation by employing multilayer EBG structure," 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, Oct. 2015.

26. Shen, C., T. Wu, C. Chen, and D. Han, "Miniaturized and bandwidth-enhanced multilayer 1-D EBG structure for power noise suppression," 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), 357-361, Aug. 2014.
doi:10.1109/ISEMC.2014.6898997

27. Kim, M. and S. Ahn, "A compact and multi-stack electromagnetic bandgap structure for gigahertz noise suppression in multilayer printed circuit boards," Applied Sciences, Vol. 7, 804, Aug. 2017.
doi:10.3390/app7080804

28. Microwave vision group (mvg), , , [Online], Available: https://www.mvg-world.com/en/products/fieldproductfamily/antenna-measurement-2/starlab.

29. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 2003.
doi:10.1049/el:20030495

30. Khandani, A. K., "Two-way (true full-duplex) wireless," 2013 13th Canadian Workshop on Information Theory, 33-38, Jun. 2013.
doi:10.1109/CWIT.2013.6621588

31. Khandani, A. K., Methods for spatial multiplexing of wireless two-way channels, patent number: 7817641, Oct. 19, 2010.

32. Jain, M., J. Choi, S. I. Sheikh, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, "Practical, real-time, full duplex wireless," MobiCom ’11 Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, 301-312, Sep. 2011.
doi:10.1145/2030613.2030647

33. Ghosh, C. K., R. Hazra, A. Biswas, A. K. Bhattachrjee, and S. K. Parui, "Suppression of crosspolarization and mutual coupling between dual trace dual column coaxial microstrip array using dumbbell-shaped resonator," Microwave and Optical Technology Letters, Vol. 56, No. 9, 2182-2186, 2014.
doi:10.1002/mop.28531

34. Karimian, R., A. Kesavan, M. Nedil, and T. A. Denidni, "Low-mutual-coupling 60-GHz MIMO antenna system with frequency selective surface wall," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 373-376, 2017.
doi:10.1109/LAWP.2016.2578179