1. Lozano, R., et al. "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010," The Lancet, Vol. 380, No. 9859, 2095-2128, 2012.
doi:10.1016/S0140-6736(12)61728-0 Google Scholar
2. Murray, C. J., et al. "Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010," The Lancet, Vol. 380, No. 9859, 2197-2223, 2012.
doi:10.1016/S0140-6736(12)61689-4 Google Scholar
3. Munawar Qureshi, A., Z. Mustansar, and A. Maqsood, "Analysis of microwave scattering from a realistic human head model for brain stroke detection using electromagnetic impedance tomography," Progress In Electromagnetics Research M, Vol. 52, 45-56, 2016.
doi:10.2528/PIERM16081303 Google Scholar
4. Mobashsher, A. T., K. Bialkowski, A. Abbosh, and S. Crozier, "Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection," Plos One, Vol. 11, No. 4, e0152351, 2016.
doi:10.1371/journal.pone.0152351 Google Scholar
5. Mobashsher, A., B. Mohammed, A. Abbosh, and S. Mustafa, "Detection and differentiation of brain strokes by comparing the reflection phases with wideband unidirectional antennas," 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1283-1285, IEEE, 2013.
doi:10.1109/ICEAA.2013.6632455 Google Scholar
6. Mohammed, B., A. Abbosh, and D. Ireland, "Stroke detection based on variations in reflection coefficients of wideband antennas," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, IEEE, 2012. Google Scholar
7. Wu, Y. and D. Pan, "Directional folded antenna for brain stroke detection based on classification algorithm," 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), 499-503, IEEE, 2018.
doi:10.1109/ITOEC.2018.8740428 Google Scholar
8. Jamlos, M., M. Jamlos, and A. Ismail, "High performance novel UWB array antenna for brain tumor detection via scattering parameters in microwave imaging simulation system," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, 2015. Google Scholar
9. Bashri, M. S. R., T. Arslan, and W. Zhou, "Flexible antenna array for wearable head imaging system," 2017 11th European Conference on Antennas and Propagation (EUCAP), 172-176, IEEE, 2017.
doi:10.23919/EuCAP.2017.7928757 Google Scholar
10. Alqadami, A. S., K. S. Bialkowski, A. T. Mobashsher, and A. M. Abbosh, "Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis," IEEE Transactions on Biomedical Circuits and Systems, Vol. 13, No. 1, 124-134, 2018.
doi:10.1109/TBCAS.2018.2878057 Google Scholar
11. Mahmood, Q., et al. "A comparative study of automated segmentation methods for use in a microwave tomography system for imaging intracerebral hemorrhage in stroke patients," Journal of Electromagnetic Analysis and Applications, Vol. 7, No. 05, 152, 2015.
doi:10.4236/jemaa.2015.75017 Google Scholar
12. Meane, P. M., F. Shubitidze, M. W. Fanning, M. Kmiec, N. R. Epstein, and K. D. Paulsen, "Surface wave multipath signals in near-field microwave imagin," Journal of Biomedical Imaging, Vol. 2012, 8, 2012. Google Scholar
13. Bourqui, J., J. Garrett, and E. Fear, "Measurement and analysis of microwave frequency signals transmitted through the breast," Journal of Biomedical Imaging, Vol. 2012, 1, 2012. Google Scholar
14. Naghdi, S., K. Y. Rhee, D. Hui, and S. J. Park, "A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications," Coatings, Vol. 8, No. 8, 278, 2018.
doi:10.3390/coatings8080278 Google Scholar
15. Dabera, G. D. M., M. Walker, A. M. Sanchez, H. J. Pereira, R. Beanland, and R. A. Hatton, "Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function," Nature Communications, Vol. 8, No. 1, 1894, 2017.
doi:10.1038/s41467-017-01735-6 Google Scholar
16. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Dept. of Physics, King’S Coll London (United Kingdom), 1996. Google Scholar
17. Riheen, M. A., T. K. Saha, and P. K. Sekhar, "Inkjet printing on PET substrate," Journal of the Electrochemical Society, Vol. 166, No. 9, B3036-B3039, 2019.
doi:10.1149/2.0091909jes Google Scholar
18. Guo, X., Y. Hang, Z. Xie, C. Wu, L. Gao, and C. Liu, "Flexible and wearable 2.45 GHz CPW-fed antenna using inkjet-printing of silver nanoparticles on pet substrate," Microwave and Optical Technology Letters, Vol. 59, No. 1, 204-208, 2017.
doi:10.1002/mop.30261 Google Scholar
19. Hassan, A., S. Ali, G. Hassan, J. Bae, and C. H. Lee, "Inkjet-printed antenna on thin PET substrate for dual band Wi-Fi communications," Microsystem Technologies, Vol. 23, No. 8, 3701-3709, 2017.
doi:10.1007/s00542-016-3113-y Google Scholar
20. Paracha, K. N., S. K. A. Rahim, H. T. Chattha, S. S. Aljaafreh, and Y. C. Lo, "Low-cost printed flexible antenna by using an office printer for conformal applications," International Journal of Antennas and Propagation, Vol. 2018, 2018. Google Scholar
21. Saeed, S. M., C. A. Balanis, and C. R. Birtcher, "Inkjet-printed flexible reconfigurable antenna for conformal WLAN/WiMAX wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1979-1982, 2016.
doi:10.1109/LAWP.2016.2547338 Google Scholar
22. Bait-Suwailam, M. M. and A. Alomainy, "Flexible analytical curve-based dual-band antenna for wireless body area networks," Progress In Electromagnetics Research, Vol. 84, 73-84, 2019.
doi:10.2528/PIERM19051004 Google Scholar
23. Islam, M., M. Mahmud, M. T. Islam, S. Kibria, and M. Samsuzzaman, "A low cost and portable microwave imaging system for breast tumor detection using uwb directional antenna array," Scientific Reports, Vol. 9, No. 1, 1-13, 2019.
doi:10.1038/s41598-018-37186-2 Google Scholar
24. Mohammed, B., D. Ireland, and A. Abbosh, "Experimental investigations into detection of breast tumour using microwave system with planar array," IET Microwaves, Antennas & Propagation, Vol. 6, No. 12, 1311-1317, 2012.
doi:10.1049/iet-map.2012.0178 Google Scholar
25. Guideline, I., "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, 1998. Google Scholar
26. IEEE C95.1-2019 "IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz,", IEEE, 2019, [Online]. Available: https://standards.ieee.org/standard/C95 1-2019.html#Standard. Google Scholar