1. Schaubert, D. H. and P. M. Meaney, "Efficient computation of scattering by inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 4, 587-592, 1986.
doi:10.1109/TAP.1986.1143855 Google Scholar
2. Peng, Z., K.-H. Lee, and J.-F. Lee, "A discontinuous Galerkin surface integral equation method for electromagnetic wave scattering from nonpenetrable targets," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3617-3628, 2013.
doi:10.1109/TAP.2013.2258394 Google Scholar
3. Cai, Q.-M., et al. "Nonconformal discretization of electric current volume integral equation with higher order hierarchical vector basis functions," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4155-4169, 2017.
doi:10.1109/TAP.2017.2710211 Google Scholar
4. Nair, N. and B. Shanker, "Generalized method of moments: A novel discretization technique for integral equation," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2280-2293, 2011.
doi:10.1109/TAP.2011.2143652 Google Scholar
5. Botha, M. M., "Solving the volume integral equations of electromagnetic scattering," J. Comput. Phys., Vol. 218, No. 1, 141-158, 2006.
doi:10.1016/j.jcp.2006.02.004 Google Scholar
6. Markkanen, J., C.-C. Lu, X. Cao, and P. Ylä-oijala, "Analysis of volume integral equation formulations for scattering by high-contrast penetrable objects," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2367-2374, 2012.
doi:10.1109/TAP.2012.2189704 Google Scholar
7. Zhang, L.-M. and X.-Q. Sheng, "A discontinuous Galerkin volume integral equation method for scattering from inhomogeneous objects," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5661-5667, 2015.
doi:10.1109/TAP.2015.2490254 Google Scholar
8. Heldring, A., J. M. Rius, J. M. Tamayo, J. Parrón, and E. Ubeda, "Fast direct solution of method of moments linear system," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 3220-3228, 2007.
doi:10.1109/TAP.2007.908804 Google Scholar
9. Heldring, A., J. M. Rius, J. M. Tamayo, J. Parrón, and E. Ubeda, "Multiscale compressed block decomposition for fast direct solution of method of moments linear system," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 526-536, 2011.
doi:10.1109/TAP.2010.2096385 Google Scholar
10. Chen, X.-L., C.-Q. Gu, Z. Li, and Z. Niu, "Accelerated direct solution of electromagnetic scattering via characteristic basis function method with Sherman-Morrison-Woodbury formula-based algorithm," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4482-4486, 2016.
doi:10.1109/TAP.2016.2587743 Google Scholar
11. Fang, X.-X., Q.-S. Cao, Y. Zhou, and Y. Wang, "Multiscale compressed and spliced Sherman-Morrison-Woodbury algorithm with characteristic basis function method," IEEE Trans. Electromagn. Compat., Vol. 60, No. 3, 716-724, 2018.
doi:10.1109/TEMC.2017.2738037 Google Scholar
12. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propag., Vol. 32, No. 1, 77-85, 1984.
doi:10.1109/TAP.1984.1143193 Google Scholar
13. Zhang, L.-M. and X.-Q. Sheng, "Discontinuous Galerkin volume integral equation solution of scattering from inhomogeneous dielectric objects by using the SWG basis function," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1500-1504, 2017.
doi:10.1109/TAP.2016.2647686 Google Scholar