Vol. 101
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-11
Adaptive Polarimetric Detection for MIMO Radar and Its Optimal Polarimetric Design in Compound-Gaussian Clutter
By
Progress In Electromagnetics Research C, Vol. 101, 233-245, 2020
Abstract
This study addresses the problem of adaptive polarimetric detector (APD) and optimal polarimetric design for the distributed multiple-input-multiple-output radar in compound-Gaussian clutter with inverse-gamma distributed texture component. We derive the APD by maximizing a posteriori estimation and performing a generalized likelihood ratio test. The false alarm probability for the detector is analyzed to validate the corresponding constant false alarm rate property. Furthermore, based on the concepts of game theory, we formulate an optimal polarimetric design as a two players zero-sum game, which further improves the performance of the proposed detector. Simulation results show that the proposed detector outperforms its counterparts, and the optimal polarimetric design algorithm can efficiently enhance the detection performance.
Citation
Zhikun Chen, and Yinan Zhao, "Adaptive Polarimetric Detection for MIMO Radar and Its Optimal Polarimetric Design in Compound-Gaussian Clutter," Progress In Electromagnetics Research C, Vol. 101, 233-245, 2020.
doi:10.2528/PIERC20012801
References

1. Fishler, E., A. M. Haimovich, and R. S. Blum, "MIMO radar: An idea whose time has come," Proceeding of 2004 IEEE Radar Conference, 71-78, 2004.        Google Scholar

2. Haimovich, A. M., R. S. Blum, and L. Cimini, "MIMO radar with widely separated antennas," IEEE Signal Processing Magazine, Vol. 25, No. 1, 116-129, 2008.        Google Scholar

3. Fishler, E., A. M. Haimovich, and R. S. Blum, "Spatial diversity in radars-models and detection performance," IEEE Transaction on Signal Processing, Vol. 54, No. 3, 823-838, 2006.        Google Scholar

4. Janatian, N., M. Modarres-Hashemi, and A. Sheikhi, "CFAR detectors for MIMO radars," Circuits, Systems, and Signal Processing, Vol. 32, No. 3, 1389-1418, 2013.        Google Scholar

5. Sammartino, P. F., C. J. Baker, and H. D. Griffiths, "Target model effects on MIMO radar performance," Proceedings of 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, V1129-V1132, 2006.        Google Scholar

6. Petillot, Y., C. Du, and J. S. Thompson, "Predicted detection performance of MIMO radar," IEEE Signal Processing Letters, Vol. 15, 83-86, 2008.        Google Scholar

7. Blum, R. S., "Limiting case of a lack of rich scattering environment for MIMO radar diversity," IEEE Signal Processing Letters, Vol. 16, No. 10, 901-904, 2009.        Google Scholar

8. Tarokh, V., N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communication: Performance criterion and code construction," IEEE Transactions on Information Theory, Vol. 44, No. 2, 744-765, 1998.        Google Scholar

9. Tarokh, V., H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthogonal designs," IEEE Transactions on Information Theory, Vol. 45, No. 5, 1456-1467, 1999.        Google Scholar

10. Tang, J., L. Ning, W. Yong, et al. "On detection performance of MIMO radar: A relative entropy-based study," IEEE Signal Processing Letters, Vol. 16, No. 3, 184-187, 2009.        Google Scholar

11. Sheikhi, A., A. Zamani, and Y. Norouzi, "Model-based adaptive target detection in clutter using MIMO radar," 2006 CIE’06, International Conference on Radar, 1-4, 2006.        Google Scholar

12. Conte, E., A. De Maio, and C. Galdi, "Statistical analysis of real clutter at different range resolutions," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 3, 903-918, 2004.        Google Scholar

13. Farina, A., F. Gini, M. V. Greco, et al. "High resolution sea clutter data: statistical analysis of recorded live data," IEE Proceedings, Radar, Sonar Navigation, Vol. 144, No. 3, 121-130, 1997.        Google Scholar

14. Sammartino, P. F., C. J. Baker, and H. D. Griffiths, "MIMO radar performance in clutter environment," 2006 CIE’06, International Conference on Radar, 1-4, 2006.        Google Scholar

15. Sammartino, P. F., C. J. Baker, and H. D. Griffiths, "Adaptive MIMO radar system in clutter," 2007 IEEE Conference on Radar, 276-281, 2007.        Google Scholar

16. Akcakaya, M., M. Hurtado, and A. Nehorai, "MIMO radar detection of targets in compound-Gaussian clutter," 2008 IEEE 42nd Asilomar Conference on Signals, Systems and Computers, 208-212, 2008.        Google Scholar

17. Chong, C. Y., F. Pascal, J. P. Ovarlez, et al. "MIMO radar detection in non-Gaussian and heterogeneous clutter," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 115-126, 2010.        Google Scholar

18. Cui, G., L. Kong, and X. Yang, "GLRT-based detection algorithm for polarimetric MIMO radar against SIRV clutter," Circuits, Systems, and Signal Processing, Vol. 31, No. 3, 1033-1048, 2012.        Google Scholar

19. Gogineni, S. and A. Nehorai, "Polarimetric MIMO radar with distributed antennas for target detection," IEEE Transaction on Signal Processing, Vol. 58, No. 3, 1689-1697, 2010.        Google Scholar

20. Xiao, J. and A. Nehorai, "Polarization optimization for scattering estimation in heavy clutter," 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 1473-1476, 2008.        Google Scholar

21. Zhang, X., D. Cao, and L. Xu, "Joint polarisation and frequency diversity for deceptive jamming suppression in MIMO radar," Radar, Sonar & Navigation, Vol. 13, No. 2, 263-271, IET, 2019.        Google Scholar

22. Pirrone, D., F. Bovolo, and L. Bruzzone, "A novel framework based on polarimetric change vectors for unsupervised multiclass change detection in dual-pol intensity SAR images," IEEE Transactions on Geoscience and Remote Sensing, 1-16, 2020.        Google Scholar

23. Gogineni, S. and A. Nehorai, "Game theoretic design for polarimetric MIMO radar target detection," Signal Processing, Vol. 92, No. 5, 1281-1289, 2012.        Google Scholar

24. Jian, L. and P. Stoica, MIMO Radar Signal Processing, John Wiley & Sons, Inc., 2008.

25. Cui, G., L. Kong, and X. Yang, "The Rao and Wald tests designed for distributed targets with polarization MIMO radar in Compound-Gaussian clutter," Circuits, Systems, and Signal Processing, Vol. 31, No. 1, 237-254, 2012.        Google Scholar

26. Miyamoto, T., S. Noguchi, and H. Yamashita, "Selection of an optimal solution for multi-objective electromagnetic apparatus design based on game theory," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1026-1029, 2008.        Google Scholar

27. Ferreira Touma, D. W. et al., "Optimizing transcutaneous energy transmitter using game theory," IEEE Transactions on Magnetics, Vol. 52, No. 3, 2015.        Google Scholar

28. Wang, J., A. Dogandzic, and A. Nehorai, "Maximum likelihood estimation of compound-Gaussian clutter and target parameters," IEEE Transactions on Signal Processing, Vol. 54, No. 10, 3884-3898, 2006.        Google Scholar

29. Shang, X. Q. and H. J. Song, "Radar detection based on compound-Gaussian model with inverse gamma texture," IET Radar Sonar Navig., Vol. 5, No. 3, 315-321, 2011.        Google Scholar

30. Shang, X. Q., H. J. Song, Y. Wang, and C. P. Hao, "Adaptive detection of distributed targets in compound-Gaussian clutter with inverse gamma texture," Digit. Signal Process, Vol. 22, No. 6, 1024-1030, 2012.        Google Scholar

31. Park, H. R., J. Li, and H. Wang, "Polarization-space-time domain generalized likelihood ratio detection of radar targets," Signal Process., Vol. 41, No. 2, 153-164, 1995.        Google Scholar

32. Zhao, Y. N., F. C. Li, and X. L. Qiao, "Knowledge-based adaptive polarimetric detection in heterogeneous clutter," J. Syst. Eng. Electron., Vol. 25, No. 3, 434-442, 2014.        Google Scholar

33. Bon, N., A. Khenchaf, and R. Garello, "GLRT subspace detection for range and Doppler distributed targets," IEEE Trans. Aerosp. Elenctron. Syst., Vol. 4, No. 22, 678-696, 2008.        Google Scholar