Vol. 102
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-14
A Review of Remotely Sensed Surface Urban Heat Islands from the Fresh Perspective of Comparisons Among Different Regions (Invited Review)
By
Progress In Electromagnetics Research C, Vol. 102, 31-46, 2020
Abstract
Urban heat islands (UHIs) threaten the ecological environment and human health. A large number of studies have focused on surface UHIs (SUHIs) across different spatial and temporal scales around the world with the development of satellite remote sensing technology. However, the influences of heterogeneous urbanization processes and background climates on SUHIs are still unclear and are important for targeted mitigation policies. A systematic review of the current status of SUHI studies, particularly from the perspective of comparisons among different regions, is urgently needed. We first introduce the commonly used satellite-retrieved data products and quantification methods used in SUHI studies. Subsequently, we summarize the potential driving factors of SUHI and compare the specific findings for different regions. Finally, we point out the deficiencies in the existing research and propose several prospects for the consideration of future SUHI studies. Additional global-scale research should be conducted using more advanced spatial statistical models. This can help better explore the spatially heterogeneous relationship between the SUHI and its associated driving factors. The effects of urbanization and climate from different regions should be further explored. Moreover, the problems of imperfections in the satellite data and from dynamic land use should not be ignored.
Citation
Zhao-Liang Li, Menglin Si, and Pei Leng, "A Review of Remotely Sensed Surface Urban Heat Islands from the Fresh Perspective of Comparisons Among Different Regions (Invited Review)," Progress In Electromagnetics Research C, Vol. 102, 31-46, 2020.
doi:10.2528/PIERC20020403
References

1. Nations, U., World Urbanization Prospects: The 2018 Revision, Department of Economic Social Affairs Population Division, 2019.

2. Vitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo, "Human domination of Earth's ecosystems," Science, Vol. 277, No. 5325, 494-499, 1997.
doi:10.1126/science.277.5325.494        Google Scholar

3. Grimm, N. B., et al., "Global change and the ecology of cities," Science, Vol. 319, No. 5864, 756-760, 2008.
doi:10.1126/science.1150195        Google Scholar

4. Oke, T. R., "The energetic basis of the urban heat island," Quarterly Journal of the Royal Meteorological Society, Vol. 108, No. 455, 1-24, 1982.        Google Scholar

5. Stewart, I. D. and T. R. Oke, "Local climate zones for urban temperature studies," Bulletin of the American Meteorological Society, Vol. 93, No. 12, 1879-1900, 2012.
doi:10.1175/BAMS-D-11-00019.1        Google Scholar

6. Peng, S., et al., "Surface urban heat island across 419 global big cities," Environmental Science & Technology, Vol. 46, No. 2, 696-703, 2012.
doi:10.1021/es2030438        Google Scholar

7. Clinton, N. and P. Gong, "Modis detected surface urban heat islands and sinks: Global locations and controls," Remote Sens. Environ., Vol. 134, 294-304, 2013.
doi:10.1016/j.rse.2013.03.008        Google Scholar

8. Arnfield, A. J., "Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island," Int. J. Climatol., Vol. 23, No. 1, 1-26, 2003.
doi:10.1002/joc.859        Google Scholar

9. Shepherd, J. M., "A review of current investigations of urban-induced rainfall and recommendations for the future," Earth Interact., Vol. 9, No. 12, 1-27, 2005.
doi:10.1175/EI156.1        Google Scholar

10. Zhao, S., S. Liu, and D. Zhou, "Prevalent vegetation growth enhancement in urban environment," Proceedings of the National Academy of Sciences, Vol. 113, No. 22, 6313, 2016.
doi:10.1073/pnas.1602312113        Google Scholar

11. Zhou, D. C., S. Q. Zhao, L. X. Zhang, and S. G. Liu, "Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities," Remote Sens. Environ., Vol. 176, 272-281, 2016.
doi:10.1016/j.rse.2016.02.010        Google Scholar

12. Patz, J. A., D. Campbell-Lendrum, T. Holloway, and J. A. Foley, "Impact of regional climate change on human health," Nature, Vol. 438, No. 7066, 310-317, 2005.
doi:10.1038/nature04188        Google Scholar

13. O’Loughlin, J., F. D. W. Witmer, A. M. Linke, A. Laing, A. Gettelman, and J. Dudhia, "Climate variability and conflict risk in East Africa, 1990–2009," Proceedings of the National Academy of Sciences, Vol. 109, No. 45, 18344, 2012.
doi:10.1073/pnas.1205130109        Google Scholar

14. Santamouris, M., C. Cartalis, A. Synnefa, and D. Kolokotsa, "On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings — A review," Energ. Buildings, Vol. 98, 119-124, 2015.
doi:10.1016/j.enbuild.2014.09.052        Google Scholar

15. Bai, X., et al., "Six research priorities for cities and climate change," Nature, Vol. 555, No. 7694, 23-25, 2018.
doi:10.1038/d41586-018-02409-z        Google Scholar

16. Huang, Q. and Y. Lu, "Urban heat island research from 1991 to 2015: A bibliometric analysis," Theor. Appl. Climatol., Vol. 131, No. 3–4, 1055-1067, 2017.        Google Scholar

17. Rasul, A., et al., "A review on remote sensing of urban heat and cool islands," Land, Vol. 6, No. 2, 38, 2017.
doi:10.3390/land6020038        Google Scholar

18. Chapman, S., J. E. M. Watson, A. Salazar, M. Thatcher, and C. A. McAlpine, "The impact of urbanization and climate change on urban temperatures: A systematic review," Landscape Ecol., Vol. 32, No. 10, 1921-1935, 2017.
doi:10.1007/s10980-017-0561-4        Google Scholar

19. Deilami, K., M. Kamruzzaman, and Y. Liu, "Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures," Int. J. Appl. Earth Obs., Vol. 67, 30-42, 2018.
doi:10.1016/j.jag.2017.12.009        Google Scholar

20. Zhou, D., et al., "Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives," Remote Sens., Vol. 11, No. 1, 1-36, 2019.        Google Scholar

21. Kotharkar, R., A. Ramesh, and A. Bagade, "Urban heat island studies in South Asia: A critical review," Urban Clim., Vol. 24, 1011-1026, 2018.
doi:10.1016/j.uclim.2017.12.006        Google Scholar

22. Giridharan, R. and R. Emmanuel, "The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: A review," Sustain Cities Soc., Vol. 40, 677-687, 2018.
doi:10.1016/j.scs.2018.01.024        Google Scholar

23. Ramakreshnan, L., et al., "A critical review of urban heat island phenomenon in the context of greater Kuala Lumpur, Malaysia," Sustain Cities Soc., Vol. 39, 99-113, 2018.
doi:10.1016/j.scs.2018.02.005        Google Scholar

24. Jin, M. L. and R. E. Dickinson, "Land surface skin temperature climatology: Benefitting from the strengths of satellite observations," Environ. Res. Lett., Vol. 5, No. 4, 044004, 2010.
doi:10.1088/1748-9326/5/4/044004        Google Scholar

25. Jin, M. S., "Developing an index to measure urban heat island effect using satellite land skin temperature and land cover observations," J. Climate, Vol. 25, No. 18, 6193-6201, 2012.
doi:10.1175/JCLI-D-11-00509.1        Google Scholar

26. Rao, P. K., "Remote sensing of urban “heat islands” from an environmental satellite," Bulletin of the American Meteorological Society, Vol. 53, No. 7, 647-648, 1972.        Google Scholar

27. Streutker, D. R., "Satellite-measured growth of the urban heat island of Houston, Texas," Remote Sens. Environ., Vol. 85, No. 3, 282-289, 2003.
doi:10.1016/S0034-4257(03)00007-5        Google Scholar

28. Lazzarini, M., P. R. Marpu, and H. Ghedira, "Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas," Remote Sens. Environ., Vol. 130, 136-152, 2013.        Google Scholar

29. Huang, X. and Y. Wang, "Investigating the effects of 3d urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, central China," ISPRS J. Photogramm., Vol. 152, 119-131, 2019.        Google Scholar

30. Weng, Q., D. Lu, and J. Schubring, "Estimation of land surface temperature — Vegetation abundance relationship for urban heat island studies," Remote Sens. Environ., Vol. 89, No. 4, 467-483, 2004.        Google Scholar

31. Chen, X. L., H. M. Zhao, P. X. Li, and Z. Y. Yin, "Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes," Remote Sens. Environ., Vol. 104, No. 2, 133-146, 2006.        Google Scholar

32. Li, Z. L., et al., "Satellite-derived land surface temperature: Current status and perspectives," Remote Sens. Environ., Vol. 131, 14-37, 2013.        Google Scholar

33. Zhou, D., S. Zhao, S. Liu, L. Zhang, and C. Zhu, "Surface urban heat island in China's 32 major cities: Spatial patterns and drivers," Remote Sens. Environ., Vol. 152, 51-61, 2014.        Google Scholar

34. Zhang, P., M. L. Imhoff, R. E. Wolfe, and L. Bounoua, "Characterizing urban heat islands of global settlements using modis and nighttime lights products," Can. J. Remote Sens., Vol. 36, No. 3, 185-196, 2010.        Google Scholar

35. Peng, J., et al., "Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective," Sci. Total Environ., Vol. 635, 487-497, 2018.        Google Scholar

36. Zhou, D., S. Zhao, L. Zhang, G. Sun, and Y. Liu, "The footprint of urban heat island effect in China," Sci. Rep.-UK, Vol. 5, 2-12, 2015.        Google Scholar

37. Haashemi, S., Q. Weng, A. Darvishi, and S. K. Alavipanah, "Seasonal variations of the surface urban heat island in a semi-arid city," Remote Sens., Vol. 8, No. 4, 352, 2016.        Google Scholar

38. Zhang, X. Y., M. A. Friedl, C. B. Schaaf, A. H. Strahler, and A. Schneider, "The footprint of urban climates on vegetation phenology," Geophys. Res. Lett., Vol. 31, No. 12, 12209, 2004.        Google Scholar

39. Meng, C. L. and Y. J. Dou, "Quantifying the anthropogenic footprint in Eastern China," Sci. Rep.-UK, Vol. 6, 24337, 2016.        Google Scholar

40. Yang, Q., X. Huang, and Q. Tang, "The footprint of urban heat island effect in 302 chinese cities: Temporal trends and associated factors," Sci. Total Environ., Vol. 655, 652-662, 2019.        Google Scholar

41. Quan, J., Y. Chen, W. Zhan, J. Wang, J. Voogt, and M. Wang, "Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model," Remote Sens. Environ., Vol. 149, 33-46, 2014.        Google Scholar

42. Keeratikasikorn, C. and S. Bonafoni, "Satellite images and Gaussian parameterization for an extensive analysis of urban heat islands in Thailand," Remote Sens., Vol. 10, No. 5, 665, 2018.        Google Scholar

43. Anniballe, R., S. Bonafoni, and M. Pichierri, "Spatial and temporal trends of the surface and air heat island over Milan using MODIS data," Remote Sens. Environ., Vol. 150, 163-171, 2014.        Google Scholar

44. Yu, Z., Y. Yao, G. Yang, X. Wang, and H. Vejre, "Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995–2015) of Southern China," Sci. Total Environ., Vol. 674, 242-254, 2019.        Google Scholar

45. Weng, Q., D. Lu, and J. Schubring, "Estimation of land surface temperature — Vegetation abundance relationship for urban heat island studies," Remote Sens. Environ., Vol. 89, No. 4, 467-483, 2004.        Google Scholar

46. Pu, R., P. Gong, R. Michishita, and T. Sasagawa, "Assessment of multi-resolution and multisensor data for urban surface temperature retrieval," Remote Sens. Environ., Vol. 104, No. 2, 211-225, 2006.        Google Scholar

47. Mika, J., P. Forgo, L. Lakatos, A. B. Olah, S. Rapi, and Z. Utasi, "Impact of 1.5K global warming on urban air pollution and heat island with outlook on human health effects," Curr. Opin. Environ. Sustain., Vol. 30, 151-159, 2018.        Google Scholar

48. Feranec, J., et al., "A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the Muklimo model," Geografie, Vol. 124, No. 1, 83-101, 2019.        Google Scholar

49. Jin, K., F. Wang, D. Chen, H. Liu, W. Ding, and S. Shi, "A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series," Scientific Data, Vol. 6, No. 1, 139, 2019.        Google Scholar

50. Imhoff, M. L., P. Zhang, R. E. Wolfe, and L. Bounoua, "Remote sensing of the urban heat island effect across biomes in the continental USA," Remote Sens. Environ., Vol. 114, No. 3, 504-513, 2010.        Google Scholar

51. Bounoua, L., et al., "Impact of urbanization on US surface climate," Environ. Res. Lett., Vol. 10, No. 8, 101001, 2015.        Google Scholar

52. Gallo, K. P., A. L. McNab, T. R. Karl, J. F. Brown, J. J. Hood, and J. D. Tarpley, "The use of a vegetation index for assessment of the urban heat island effect," Int. J. Remote Sens., Vol. 14, No. 11, 2223-2230, 1993.        Google Scholar

53. Lu, D. and Q. Weng, "Spectral mixture analysis of aster images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA," Remote Sens. Environ., Vol. 104, No. 2, 157-167, 2006.        Google Scholar

54. Liu, H. and Q. H. Weng, "Seasonal variations in the relationship between landscape pattern and land surface temperature in indianapolis, USA," Environ. Monit. Assess., Vol. 144, No. 1–3, 199-219, 2008.        Google Scholar

55. Yang, Q., X. Huang, and J. Li, "Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China," Sci. Rep.-UK, Vol. 7, No. 1, 1-11, 2017.        Google Scholar

56. Meng, D., S. Y. Yang, H. L. Gong, X. J. Li, and J. Zhang, "Assessment of thermal environment landscape over five megacities in China based on Landsat 8," J. Appl. Remote Sens., Vol. 10, 026034, 2016.        Google Scholar

57. Zhou, D., L. Zhang, L. Hao, G. Sun, Y. Liu, and C. Zhu, "Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China," Sci. Total Environ., Vol. 544, No. 219, 617-626, 2016.        Google Scholar

58. Zhou, B., D. Rybski, and J. P. Kropp, "The role of city size and urban form in the surface urban heat island," Sci. Rep.-UK, Vol. 7, No. 1, 1-9, 2017.        Google Scholar

59. Bonafoni, S., G. Baldinelli, P. Verducci, and A. Presciutti, "Remote sensing techniques for urban heating analysis: A case study of sustainable construction at district level," Sustainability-Basel, Vol. 9, No. 8, 1-12, 2017.        Google Scholar

60. Sobstyl, J. M., T. Emig, M. J. A. Qomi, F. J. Ulm, and R. J. M. Pellenq, "Role of city texture in urban heat islands at nighttime," Phys. Rev. Lett., Vol. 120, No. 10, 6, 2018.        Google Scholar

61. Yue, W. Z., X. Liu, Y. Y. Zhou, and Y. Liu, "Impacts of urban configuration on urban heat island: An empirical study in China mega-cities," Sci. Total Environ., Vol. 671, 1036-1046, 2019.        Google Scholar

62. Yin, C. H., M. Yuan, Y. P. Lu, Y. P. Huang, and Y. F. Liu, "Effects of urban form on the urban heat island effect based on spatial regression model," Sci. Total Environ., Vol. 634, 696-704, 2018.        Google Scholar

63. Cao, C., et al., "Urban heat islands in China enhanced by haze pollution," Nat. Commun., Vol. 7, 7, 2016.        Google Scholar

64. Zhou, D., S. Bonafoni, L. Zhang, and R. Wang, "Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China," Sci. Total Environ., Vol. 628–629, No. 219, 415-429, 2018.        Google Scholar

65. Zhao, L., X. Lee, R. B. Smith, and K. Oleson, "Strong contributions of local background climate to urban heat islands," Nature, Vol. 511, No. 7508, 216-219, 2014.        Google Scholar

66. Zhao, L., "Urban growth and climate adaptation," Nature Climate Change, Vol. 8, No. 12, 1034, 2018.        Google Scholar

67. Manoli, G., et al., "Magnitude of urban heat islands largely explained by climate and population," Nature, Vol. 573, No. 7772, 55-60, 2019.        Google Scholar

68. Sun, R., Y. Lv, X. Yang, and L. Chen, "Understanding the variability of urban heat islands from local background climate and urbanization," J. Clean. Prod., Vol. 208, 743-752, 2019.        Google Scholar

69. Kim, Y. H. and J. J. Baik, "Spatial and temporal structure of the urban heat island in Seoul," Journal of Applied Meteorology, Vol. 44, No. 5, 591-605, 2005.        Google Scholar

70. Pongracz, R., J. Bartholy, and Z. Dezso, "Remotely sensed thermal information applied to urban climate analysis," Adv. Space Res., Vol. 37, No. 12, 2191-2196, 2006.        Google Scholar

71. Yan, Z. W., J. Wang, J.-J. Xia, and J. M. Feng, "Review of recent studies of the climatic effects of urbanization in China," Adv. Clim. Chang. Res., Vol. 7, No. 3, 154-168, 2016.        Google Scholar

72. Ningrum, W., "Urban heat island towards urban climate," IOP Conference Series: Earth and Environmental Science, Vol. 118, No. 1, 2018.        Google Scholar

73. Schwarz, N., S. Lautenbach, and R. Seppelt, "Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures," Remote Sens. Environ., Vol. 115, No. 12, 3175-3186, 2011.        Google Scholar

74. Weng, Q., "A remote sensing-gis evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China," Int. J. Remote Sens., Vol. 22, No. 10, 1999-2014, 2001.        Google Scholar

75. Tran, H., D. Uchihama, S. Ochi, and Y. Yasuoka, "Assessment with satellite data of the urban heat island effects in Asian mega cities," Int. J. Appl. Earth Obs., Vol. 8, No. 1, 34-48, 2006.        Google Scholar

76. Cui, Y., X. Xu, J. Dong, and Y. Qin, "Influence of urbanization factors on surface urban heat island intensity: A comparison of countries at different developmental phases," Sustainability (Switzerland), Vol. 8, No. 8, 706, 2016.        Google Scholar

77. Singh, R. B., A. Grover, and J. Y. Zhan, "Inter-seasonal variations of surface temperature in the urbanized environment of delhi using landsat thermal data," Energies, Vol. 7, No. 3, 1811-1828, 2014.        Google Scholar

78. Singh, P., N. Kikon, and P. Verma, "Impact of land use change and urbanization on urban heat island in Lucknow city, central India. A remote sensing based estimate," Sustain. Cities Soc., Vol. 32, 100-114, 2017.        Google Scholar

79. Dissanayake, D., T. Morimoto, M. Ranagalage, and Y. Murayama, "Land-use/land-cover changes and their impact on surface urban heat islands: Case study of Kandy city, Sri Lanka," Climate, Vol. 7, No. 8, 99, 2019.        Google Scholar

80. Chen, L., R. Jiang, and W. N. Xiang, "Surface heat island in Shanghai and its relationship with urban development from 1989 to 2013," Adv. Meteorol., Vol. 2016, 15 pages, 2016.        Google Scholar

81. Buyantuyev, A. and J. G. Wu, "Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns," Landscape Ecol., Vol. 25, No. 1, 17-33, 2010.        Google Scholar

82. Deilami, K. and M. Kamruzzaman, "Modelling the urban heat island effect of smart growth policy scenarios in Brisbane," Land Use Policy, Vol. 64, 38-55, 2017.        Google Scholar

83. Yang, Z., Y. Chen, Z. Wu, Z. Zheng, and J. Li, "Spatial pattern of urban heat island and multivariate modeling of impact factors in the Guangdong-Hong Kong-Macao Greater Bay Area," Resources Science, Vol. 41, No. 6, 1154-1166, 2019.        Google Scholar

84. Wu, K. and X. Q. Yang, "Urbanization and heterogeneous surface warming in Eastern China," Chinese Sci. Bull., Vol. 58, No. 12, 1363-1373, 2013.        Google Scholar

85. Fonseka, H. P. U., H. S. Zhang, Y. Sun, H. Su, H. Lin, and Y. Y. Lin, "Urbanization and its impacts on land surface temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to 2016," Remote Sens., Vol. 11, No. 8, 957, 2019.        Google Scholar

86. Dhar, R. B., S. Chakraborty, R. Chattopadhyay, and P. K. Sikdar, "Impact of land-use/land-cover change on land surface temperature using satellite data: A case study of Rajarhat Block, North 24-Parganas District, West Bengal," J. Indian Soc. Remote, Vol. 47, No. 2, 331-348, 2019.        Google Scholar

87. Ding, H. Y. and W. Z. Shi, "Land-use/land-cover change and its influence on surface temperature: A case study in Beijing city," Int. J. Remote Sens., Vol. 34, No. 15, 5503-5517, 2013.        Google Scholar

88. Zhou, B., D. Rybski, and J. P. Kropp, "On the statistics of urban heat island intensity," Geophys. Res. Lett., Vol. 40, No. 20, 5486-5491, 2013.        Google Scholar

89. Ward, K., S. Lauf, B. Kleinschmit, and W. Endlicher, "Heat waves and urban heat islands in Europe: A review of relevant drivers," Sci. Total Environ., Vol. 569–570, 527-539, 2016.        Google Scholar

90. Peng, J., J. Jia, Y. Liu, H. Li, and J. Wu, "Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas," Remote Sens. Environ., Vol. 215, 255-267, 2018.        Google Scholar

91. Shastri, H., S. Paul, S. Ghosh, and S. Karmakar, "Impacts of urbanization on Indian summer monsoon rainfall extremes," Journal of Geophysical Research Atmospheres, Vol. 120, 495-516, 2015.        Google Scholar

92. Barat, A., S. Kumar, P. Kumar, and P. P. Sarthi, "Characteristics of surface urban heat island (Suhi) over the gangetic plain of Bihar, India," Asia-Pac. J. Atmos. Sci., Vol. 54, No. 2, 205-214, 2018.        Google Scholar

93. Shastri, H., B. Barik, S. Ghosh, C. Venkataraman, and P. Sadavarte, "Flip flop of day-night and summer-winter surface urban heat island intensity in India," Sci. Rep.-UK, Vol. 7, 1-8, 2017.        Google Scholar

94. Soltanifard, H. and K. Aliabadi, "Impact of urban spatial configuration on land surface temperature and urban heat islands: A case study of Mashhad, Iran," Theor. Appl. Climatol., Vol. 137, No. 3–4, 2889-2903, 2019.        Google Scholar

95. Simwanda, M., M. Ranagalage, R. C. Estoque, and Y. Murayama, "Spatial analysis of surface urban heat islands in four rapidly growing African cities," Remote Sens., Vol. 11, No. 14, 1645, 2019.        Google Scholar

96. Cui, Y. Y. and B. de Foy, "Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico city," Journal of Applied Meteorology & Climatology, Vol. 51, No. 5, 855-868, 2006.        Google Scholar

97. Li, X., Y. Zhou, G. R. Asrar, M. Imhoff, and X. Li, "The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States," Sci. Total Environ., Vol. 605–606, 426-435, 2017.        Google Scholar

98. Yao, R., L. C. Wang, X. Gui, Y. K. Zheng, H. M. Zhang, and X. Huang, "Urbanization effects on vegetation and surface urban heat islands in China’s Yangtze River Basin," Remote Sens., Vol. 9, No. 6, 540, 2017.        Google Scholar

99. Tu, L. L., et al., "Surface urban heat island effect and its relationship with urban expansion in Nanjing, China," J. Appl. Remote Sens., Vol. 10, No. 2, 026037, 2016.        Google Scholar

100. Cai, D., K. Fraedrich, Y. Guan, S. Guo, and C. Zhang, "Urbanization and the thermal environment of Chinese and US-American cities," Sci. Total Environ., Vol. 589, 200-211, 2017.        Google Scholar

101. Wang, C. Y., S. W. Myint, P. L. Fan, M. Stuhlmacher, and J. C. Yang, "The impact of urban expansion on the regional environment in Myanmar: A case study of two capital cities," Landscape Ecol., Vol. 33, No. 5, 765-782, 2018.        Google Scholar

102. Krayenhoff, E. S., M. Moustaoui, A. M. Broadbent, V. Gupta, and M. Georgescu, "Diurnal interaction between urban expansion, climate change and adaptation in US cities," Nature Climate Change, Vol. 8, No. 12, 1097, 2018.        Google Scholar

103. Yao, R., L. Wang, X. Huang, W. Zhang, J. Li, and Z. Niu, "Interannual variations in surface urban heat island intensity and associated drivers in China," J. Environ. Manage., Vol. 222, 86-94, 2018.        Google Scholar

104. Mohajerani, A., J. Bakaric, and T. Jeffrey-Bailey, "The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete," J. Environ. Manage., Vol. 197, 522-538, 2017.        Google Scholar

105. Filho, W. L., L. E. Icaza, V. O. Emanche, and A. Q. Al-Amin, "An evidence-based review of impacts, strategies and tools to mitigate urban heat islands," Int. J. Env. Res. Pub. He., Vol. 14, No. 12, 29, 2017.        Google Scholar

106. Aflaki, A., et al., "Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong," Cities, Vol. 62, 131-145, 2017.        Google Scholar

107. He, B. J., "Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects," Urban Clim., Vol. 24, 26-33, 2018.        Google Scholar

108. Khamchiangta, D. and S. Dhakal, "Physical and non-physical factors driving urban heat island: Case of Bangkok Metropolitan Administration, Thailand," J. Environ. Manage., Vol. 248, 109285, 2019.        Google Scholar

109. Yang, W., Y. Luan, X. Liu, X. Yu, L. Miao, and X. Cui, "A new global anthropogenic heat estimation based on high-resolution nighttime light data," Scientific Data, Vol. 4, 170116, 2017.        Google Scholar

110. McCarthy, M. P., M. J. Best, and R. A. Betts, "Climate change in cities due to global warming and urban effects," Geophys. Res. Lett., Vol. 37, No. 9, L09705, 2010.        Google Scholar

111. Zhao, S. Q., D. C. Zhou, and S. G. Liu, "Data concurrency is required for estimating urban heat island intensity," Environ. Pollut., Vol. 208, 118-124, 124.        Google Scholar

112. Morris, C. J. G., I. Simmonds, and N. Plummer, "Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city," Journal of Applied Meteorology, Vol. 40, No. 2, 169-182, 2001.        Google Scholar

113. Mirzaei, P. A., "Recent challenges in modeling of urban heat island," Sustain. Cities Soc., Vol. 19, 200-206, 2015.        Google Scholar