1. El-Tager, A. M. and M. A. Eleiwa, "Design and implementation of a smart antenna using Butler matrix for ISM-band," Progress In Electromagnetics Research Symposium, Beijing, 2009. Google Scholar
2. Kilani, M. B., M. Nedil, N. Kandil, and T. A. Denidni, "Design of conformal microstrip Butler matrix at 2.4 GHz," IEEE International Symposium on Antennas and Propagation, Chicago, 2012. Google Scholar
3. Alam, M. M., "Microstrip antenna array with four port Butler matrix for switched beam base station application," 12th International Conference on Computer and Information Technology (ICCIT), Dhaka, 2009. Google Scholar
4. Pandey, A. K., "Design of a compact high-power phased array for 5G FD-MIMO system at 29 GHz," Asia-Pacific Microwave Conference, New Delhi, 2016. Google Scholar
5. Babale, S. A., S. K. A. Rahim, O. Elijah, and S. I. Orakwue, "Two-dimensional beam-steering phased-array utilizing 2 × 2 Butler matrix," IEEE 3rd International Conference on Electro- Technology for National Development (NIGERCON), Owerri, Nigeria, 2017. Google Scholar
6. Ding, K., X. Fang, Y. Wang, and A. Chen, "Printed dual-layer three-way directional coupler utilized as 3 × 3 beamforming network for orthogonal three-beam antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 911-914, 2014.
doi:10.1109/LAWP.2014.2321971 Google Scholar
7. Solmain, I., A. Rydosz, S. Gruszczynki, and K. Wincza, "Three beam microstrip antenna arrays fed by 3×3 Butler matrix," 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Xi'an, China, 2017. Google Scholar
8. Djera, T., N. J. G. Fonseca, and K. Wu, "Design and implementation of a planar 4 × 4 Butler matrix in SIW technology for wide band high power applications," Progress In Electromagnetics Research B, Vol. 35, 29-51, 2011.
doi:10.2528/PIERB11062004 Google Scholar
9. Zhai, Y., X. Fang, K. Ding, and F. He, "Miniaturization design for 8 × 8 Butler matrix based on back-to-back bilayer microstrip," International Journal of Antennas and Propagation, Vol. 2014, 1-7, 2014. Google Scholar
10. Rosati, G. and J. Munn, "Fast prototyping of an 8×8 Butler matrix beamforming network for 5G applications," International Conference on Electromagnetics in Advanced applications, (ICEAA), Verona, Italy, 2017. Google Scholar
11. Lei, S. and L. Jian, "Beam forming networks for triangular grid multi-beam array," IEEE International Conference on Microwave Technology & Computational Electromagnetics, Qingdao, China, 2013. Google Scholar
12. Zulkifli, F. Y., N. Chasanah, and E. T. Rahardjo, "Design of Butler matrix integrated with antenna array for beam forming," International Symposium on Antennas and Propagation (ISAP), Hobart, Australia, 2015. Google Scholar
13. Zhou, C., J. Fu, H. Sun, and Q. Wu, "A novel compact dual-band Butler matrix design," 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 2014. Google Scholar
14. Lazovic, L., A. Jovanovic, B. Lutovac, and V. Rubezic, "The application of graph theory for the design of reconfigurable fractal antenna," 2016 24th Telecommunications Forum (TELFOR), Belgrade, Sweden, 2016. Google Scholar
15. Prakash, V., S. Kumawat, and P. Singh, "Circuital analysis of coaxial fed rectangular and U-slot patch antenna," International Conference on Computing, Communication and Automation (ICCCA2016), Greater, Noida, 2016. Google Scholar
16. Prakash, V., S. Kumawat, and P. Singh, "Design and analysis of full and half mode substrate integrated waveguide planar leaky wave antenna with continuous beam scanning in X-Ku band," Frequenz, Vol. 73, No. 5, 171-178, 2019.
doi:10.1515/freq-2018-0212 Google Scholar
17. Ren, H., B. Arigong, M. Zhou, J. Ding, and H. Zhang, "A novel design of 4×4 Butler matrix with relatively flexible phase differences," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1277-1280, 2016.
doi:10.1109/LAWP.2015.2504719 Google Scholar
18. Wang, W., Z. Qu, Z. Shen, L. Lou, K. Tang, and Y. Zheng, "Design of broadband phased array antenna at X-band," 2017 Progress In Electromagnetics Research Symposium — Fall (PIERS — FALL), Singapore, Singapore, Nov. 19–22, 2017. Google Scholar
19. Chu, H. N. and T.-G. Ma, "An extended 4 × 4 Butler matrix with enhanced beam controllability and widened spatial coverage," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1301-1311, 2018.
doi:10.1109/TMTT.2017.2772815 Google Scholar
20. Yao, Y.-L., F.-S. Zhang, and F. Zhang, "A new approach to design circularly polarized beam-steering antenna arrays without phase shift circuits," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2354-2364, 2018.
doi:10.1109/TAP.2018.2811839 Google Scholar
21. Murata, T., "Petri nets: Properties, analysis and applications," Proceedings of the IEEE, Vol. 77, 541-580, 1982. Google Scholar
22. Kumawat, S. and G. N. Purohit, "Total span of farm workflow using Petri net with resource sharing," Int. J. Business Process Integration and Management, Vol. 8, 160-171, 2017.
doi:10.1504/IJBPIM.2017.085395 Google Scholar
23. Kumawat, S., "Weighted directed graph: A Petri Net based method of extraction of closed weighted directed Euler trail," International Journal of Services, Economics and management, Vol. 4, No. 3, 252-264, 2012.
doi:10.1504/IJSEM.2012.048622 Google Scholar
24. Shareef, A. and Y. Zhu, "Effective Stochastic modelling of energy constrained wireless sensor networks," Journal Computer Network and Communication, 2012. Google Scholar
25. Di Martino, C., Resiliency assessment of wireless sensor networks: A holistic approach, Ph.D. Thesis, Federico II, University of Naples, Italy, 2009.
26. Yahya, B., J. Ben-Othman, L. Mokdad, and S. Diagne, "Performance evaluation of a medium access control protocol for wireless sensor networks using Petri Nets," HET-NET’s 2010, 335-354, 2010. Google Scholar
27. Gupta, S., S. Kumawat, and G. P. Singh, "Fuzzy Petri Net representation of fuzzy production propositions of a rule based system," Communications in Computer and Information Science, Springer CCIS, Advances in Computing and Data Sciences, 197-210, 2019. Google Scholar
28. Gupta, S., G. P. Singh, and S. Kumawat, "Petri Net recommender system to model metabolic pathway of polyhydroxyalkanoates," International Journal of Knowledge and Systems Science (IJKSS) IGI Global Editorial Discovery, Vol. 10, No. 2, 18, 2019. Google Scholar