1. Ku, M., W. Li, Y. Chen, and K. J. Ray Liu, "Advances in energy harvesting communications: Past, present, and future challenges," IEEE Communications Surveys & Tutorials, Vol. 18, No. 2, 1384-1412.
doi:10.1109/COMST.2015.2497324 Google Scholar
2. Valenta, C. R. and G. D. Durgin, "Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems," IEEE Microwave Magazine, Vol. 15, No. 4, 108-120, June 2014, doi: https://doi.org/10.1109/MMM.2014.2309499.
doi:10.1109/MMM.2014.2309499 Google Scholar
3. Shafique, K., et al. "Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications," IEEE Access, Vol. 6, 30932-30941, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2834392.
doi:10.1109/ACCESS.2018.2834392 Google Scholar
4. Awais, Q., Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, "A compact rectenna system with high conversion efficiency for wireless energy harvesting," IEEE Access, Vol. 6, 35857-35866, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2848907.
doi:10.1109/ACCESS.2018.2848907 Google Scholar
5. Chuma, E. L., L. de la Torre Rodr´ıguez, Y. Iano, L. L. B. Roger, and M. Sanchez-Soriano, "Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area," IET Microwaves, Antennas & Propagation, Vol. 12, No. 2, 173-178, 2018, doi: https://doi.org/10.1049/iet-map.2016.1150.
doi:10.1049/iet-map.2016.1150 Google Scholar
6. Mattsson, M., C. I. Kolitsidas, and B. L. G. Jonsson, "Dual-band dual-polarized full-wave rectenna based on differential field sampling," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 956-959, June 2018, doi: https://doi.org/10.1109/LAWP.2018.2825783.
doi:10.1109/LAWP.2018.2825783 Google Scholar
7. Shao, X., B. Li, N. Shahshahan, N. Goldsman, T. S. Salter, and G. M. Metze, "A planar dual-band antenna design for RF energy harvesting applications," 2011 International Semiconductor Device Research Symposium (ISDRS), 1-2, College Park, MD, 2011, doi: https://doi.org/10.1109/ISDRS.2011.6135318. Google Scholar
8. Chandravanshi, S., S. S. Sarma, and M. J. Akhtar, "Design of triple band differential rectenna for RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 2716-2726, June 2018, doi: https://doi.org/10.1109/TAP.2018.2819699.
doi:10.1109/TAP.2018.2819699 Google Scholar
9. Tavares, J., et al. "Spectrum opportunities for electromagnetic energy harvesting from 350 MHz to 3 GHz," 2013 7th International Symposium on Medical Information and Communication Technology (ISMICT), 126-130, Tokyo, 2013, doi: https://doi.org/10.1109/ISMICT.2013.6521714. Google Scholar
10. Nimo, A., D. Grgic, and L. M. Reindl, "Ambient Electromagnetic wireless energy harvesting using multiband planar antenna," International Multi-Conference on Systems, Signals & Devices, 1-6, Chemnitz, 2012, doi: https://doi.org/10.1109/SSD.2012.6198036. Google Scholar
11. Mansour, M., X. Le Polozec, and H. Kanaya, "Enhanced broadband RF differential rectifier integrated with archimedean spiral antenna for wireless energy harvesting applications," Sensors, Vol. 19, No. 3, 655, 2019, doi: https://doi.org/10.3390/s19030655.
doi:10.3390/s19030655 Google Scholar
12. Kurvey, M. and A. Kunte, "Tri-stepped rectangular antenna for efficient RF energy harvesting," J. Commun. Inf. Netw., Vol. 3, 86-90, 2018, doi: https://doi.org/10.1007/s41650-018-0018-1.
doi:10.1007/s41650-018-0018-1 Google Scholar
13. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "Broadband rectenna for radio frequency energy harvesting application," IETE J. of Research, Vol. 64, No. 3, 347-353, 2017.
doi:10.1080/03772063.2017.1356755 Google Scholar
14. Arrawatia, M., M. S. Baghini, and G. Kumar, "Broadband RF energy harvesting system covering CDMA GSM900 GSM1800 3G bands with inherent impedance matching," Proc. IEEE MTT-S International Microwave Symposium (IMS), 1-3, San Francisco, CA, USA, 2016. Google Scholar
15. Arrawatia, M., M. S. Baghini, and G. Kumar, "Broadband bent triangular omnidirectional antenna for RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 36-39, 2015. Google Scholar
16. Booket, M. R., A. Jafargholi, M. Kamyab, H. Eskandari, M. Veysi, and S. M. Mousavi, "A compact multi-band printed dipole antenna loaded with single-cell MTM," IET Microwaves, Antennas & Propagation, Vol. 6, No. 1, 17-23, 2012.
doi:10.1049/iet-map.2010.0545 Google Scholar
17. Ali, M. M. M., A. M. Azmy, and O. M. Haraz, "Design and implementation of reconfigurable quad-band microstrip antenna for MIMO wireless communication applications," Proc. IEEE 31th National Radio Science Conference (NRSC), 27-34, Cairo, Egypt, 2014. Google Scholar
18. Ansal, K. A. and T. Shanmuganataham, "Compact Novel ACS fed antenna with defected ground for triple frequency operation," Proc. IEEE Annual International Conference on Emerging Research Areas and International Conference on Microelectronics, Communic, 1-4, Kanjirapally, India, 2013. Google Scholar
19. Ma, C., Z. Kuai, X.-W. Zhu, and W.-J. Zhu, "A broadside-coupled feeding planar multiband antenna," Proc. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), 520-521, Orlando, FL, USA, 2013. Google Scholar
20. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Crawfordsville, USA, 1998.
21. Dwivedi, S., V. Mishra, and Y. P. Kosta, "Metamaterial-inspired patch antenna miniaturization technique for Satellite: Emerging Technology Trends in Electronics," Proc. IEEE 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking (ET2ECN), 1-6, Gujarat, India, 2012. Google Scholar
22. Taghadosi, M., L. Albasha, N. Qaddoumi, and M. Ali, "Miniaturized printed elliptical nested fractal multiband antenna for energy harvesting applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1045-1053, 2015.
doi:10.1049/iet-map.2014.0744 Google Scholar