Vol. 101
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-08
A Novel Complementary Slotted Split Ring Resonator Loaded Truncated Arc Patch Antenna with Enhanced Performance
By
Progress In Electromagnetics Research C, Vol. 101, 203-218, 2020
Abstract
This paper proposes a truncated arc patch antenna loaded with a novel complementary slotted split ring resonator (CSlSRR) in the ground plane. The antenna achieves wide bandwidth, circular polarisation (CP), and omnidirectional radiation pattern in the S-band. The electrical size of the antenna is 0.36λ0 × 0.31λ0, and the radiating metal dimension is 0.18λ0 × 0.21λ00 corresponds to f0 = 2.45 GHz). Truncated corners with a semi-circular arc produce CP with the inset feed. The CSlSRR helps in improving the bandwidth and miniaturisation of the antenna. The design achieves a size reduction of 61%. The fabricated antenna exhibits 12.3% impedance bandwidth (IBW), 4.07% axial ratio bandwidth (ARBW), and a maximum gain of 2.476 dBi at 2.75 GHz. The antenna prototype is characterised in an anechoic chamber. The paper carries out a comparison of the measured and simulated results and other reported works in literature.
Citation
Shailesh Maroli Rao, and Prabhugoud Iranna Basarkod, "A Novel Complementary Slotted Split Ring Resonator Loaded Truncated Arc Patch Antenna with Enhanced Performance," Progress In Electromagnetics Research C, Vol. 101, 203-218, 2020.
doi:10.2528/PIERC20031003
References

1. Randy, O. T. and Nasimuddin, "Circularly polarized slotted-ground microstrip antennas for radiofrequency identification reads ," Microw. Opt. Technol. Lett., Vol. 54, No. 10, 2304-2309, 2012.        Google Scholar

2. Elftouh, H., N. Amar Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.        Google Scholar

3. Jangid, K. G., A. Tiwari, V. Sharma, V. S. Kulhar, V. K. Saxena, and D. Bhatnagar, "Circular patch antenna with defected ground for UWB communication with WLAN band rejection," Def. Sci. J., Vol. 66, No. 2, 162-167, 2016.        Google Scholar

4. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International J. Antennas Propag., Vol. 2017, 1-21, 2017.        Google Scholar

5. Arora, C., S. S. Pattnaik, and R. N. Baral, "SRR superstrate for gain and bandwidth enhancement of microstrip patch antenna array," Progress In Electromagnetics Research B, Vol. 76, 73-85, 2017.        Google Scholar

6. Ali, T., S. Pathan, and R. C. Biradar, "A miniaturized circularly polarized coaxial fed superstrate slot antenna for L-band application," Microw. Opt. Technol. Lett., Vol. 1, No. 6, 2018.        Google Scholar

7. Arora, C., S. S. Pattnaik, and R. N. Baral, "SRR inspired microstrip patch antenna array," Progress In Electromagnetics Research C, Vol. 58, 89-96, 2015.        Google Scholar

8. Patel, S. K., C. Argyropoulos, and Y. P. Kosta, "Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate," Waves in Random and Complex Media, Vol. 5030, 1-12, 2016.        Google Scholar

9. Gao, X. J., T. Cai, and L. Zhu, "Enhancement of gain and directivity for microstrip antenna using negative permeability metamaterial," AEU --- Int. J. Electron. Commun., Vol. 70, No. 7, 880-885, 2016.        Google Scholar

10. Dawar, P., A. De, and N. S. Raghava, "S-shaped metamaterial ultra-wideband directive patch antenna," Radioelectron. Commun. Syst., Vol. 61, No. 9, 394-405, 2018.        Google Scholar

11. Chaturvedi, D. and S. Raghavan, "SRR-loaded metamaterial-inspired electrically-small monopole antenna," Progress In Electromagnetics Research C, Vol. 81, 11-19, 2018.        Google Scholar

12. Parvathy, A. R., V. G. Ajay, and T. Mathew, "Circularly polarized split ring resonator loaded slot antenna for RFID readers and WLAN applications ," Adv. Electromagn., Vol. 7, No. 5, 1-6, 2018.        Google Scholar

13. Khalilpour, J. and M. Nosrati, "Micro-strip antenna with high bandwidth, cone pattern, circular polarization, and slit," Electromagnetics, Vol. 39, No. 1, 18-29, 2019.        Google Scholar

14. Zhang, H., Y. Q. Li, X. Chen, Y. Q. Fu, and N. C. Yuan, "Design of circular polarisation microstrip patch antennas with complementary split ring resonator," IET Microwaves, Antennas Propag., Vol. 3, No. 8, 1186-1190, 2009.        Google Scholar

15. Zhang, H., Y. Li, X. Chen, Y. Fu, and N. Yuan, "Design of circular/dual-frequency linear polarization," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3352-3355, 2009.        Google Scholar

16. Singh, G., B. K. Kanaujia, V. K. Pandey, D. Gangwar, and S. Kumar, "Design of compact dual-band patch antenna loaded with D-shaped complementary split ring resonator," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 16, 1-16, 2019.        Google Scholar

17. Pandey, S. K., G. Prasad Pandey, and P. M. Sarun, "Circularly polarized micro-strip antenna with fractal trees loaded ground plane," Electromagnetics, Vol. 39, No. 7, 505-523, 2019.        Google Scholar

18. Samson Daniel, R., R. Pandeeswari, and S. Raghavan, "Offset-fed complementary split ring resonators loaded monopole antenna for multiband operations," AEU --- Int. J. Electron. Commun., Vol. 78, 72-78, 2017.        Google Scholar

19. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "A miniaturized printed monopole antenna loaded with hexagonal complementary split ring resonators for multiband operations," Int. J. RF Microw. Comput. Eng., Vol. 28, No. 7, 1-8, 2018.        Google Scholar

20. Samanta, G. and S. R. Bhadra Chaudhuri, "Design of a compact CP antenna with enhanced bandwidth using a novel hexagonal ring based reactive impedance substrate," Progress In Electromagnetics Research M, Vol. 69, 115-125, 2018.        Google Scholar

21. Catano-Ochoa, D., D. E. Senior, F. Lopez, and E. Reyes-Vera, "Performance analysis of a microstrip patch antenna loaded with an array of metamaterial resonators," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 281-282, 2016.        Google Scholar

22. Al-Bawri, S. S., H. H. Goh, S. Islam, and H. Y. Wong, "Compact ultra-wideband monopole antenna loaded with metamaterial," Sensors, Vol. 20, No. 3, 1-16, 2020.        Google Scholar

23. Al-Bawri, S. S., S. Islam, H. Y. Wong, and M. F. Jamlos, "Bandwidth and gain enhancement of quad-band CPW-fed antenna for wireless applications," Sensors, Vol. 20, No. 2, 1-4, 2020.        Google Scholar

24. Abdelrehim, A. A. A. and H. Ghafouri-shiraz, "High-performance terahertz antennas based on split ring resonator and thin wire," Microw. Opt. Technol. Lett., Vol. 58, No. 2, 382-389, 2015.        Google Scholar

25. Koutsoupidou, M., N. Uzunoglu, I. S. Karanasiou, and A. S. Description, "Antennas on metamaterial substrates as emitting components for THz biomedical imaging," IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), 11-13, Nov. 2012.        Google Scholar

26. Ma, F., Y. Lin, X. Zhang, and C. Lee, "Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array," Light Sci. Appl., Vol. 3, 1-8, 2014.        Google Scholar

27. Oliveira, J. G. D., E. N. M. G. Pinto, V. P. Silva Neto, and A. G. D’Assuncao, "CSRR-based microwave sensor for dielectric materials characterization applied to soil water content determination," Sensors, Vol. 20, No. 2, 1-16, 2020.        Google Scholar

28. Reyes-Vera, E., G. Acevedo-Osorio, M. Arias-Correa, and D. E. Senior, "A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization," Sensors, Vol. 19, No. 8, 1-12, 2019.        Google Scholar

29. Hamidkhani, M. and F. Mohajeri, "Dual-band complementary split-ring resonator (CSRR) with high-quality factor and its applications in low phase noise oscillators and small multi-band diplexers and filters," Progress In Electromagnetics Research M, Vol. 52, 33-44, 2016.        Google Scholar

30. Umair, H., et al. "A unique metamaterial inspired star-slot UWB antenna with soft surface ground," Electromagnetics, Vol. 40, No. 2, 152-163, 2020.        Google Scholar

31. Krzysztofik, W. J. and T. N. Cao, "Metamaterials in application to improve antenna parameters," Metamaterials and Metasurfaces, 2018.        Google Scholar

32. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.        Google Scholar

33. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 1-5, 2002.        Google Scholar

34. Smith, D., J. Gollub, J. J. Mock, and W. Padila, "Calculation and measurement of bianisotropy in a split ring resonator metamaterial," J. Appl. Phys., Vol. 100, No. 3, 183-189, 2006.        Google Scholar

35. Szabo, Z., G. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2646-2653, 2010.        Google Scholar

36. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E --- Stat. Nonlinear, Soft Matter Phys., Vol. 71, No. 3, 1-11, 2005.        Google Scholar

37. Baena, J. D., et al. "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1451-1460, 2005.        Google Scholar

38. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, and K. B. Alici, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2865-2873, 2007.        Google Scholar

39. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., Wiley-Interscience, 2005.