1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001 Google Scholar
2. Carrubba, E., S. Genovesi, A. Monorchio, and G. Manara, "AMC-based low profile antennas for 4G communication services," 2007 IEEE Antennas and Propagation Society International Symposium, 3364-3367, Honolulu, USA, Jun. 2007. Google Scholar
3. Qu, D., L. Shafai, and A. Foroozesh, "Improving microstrip patch antenna performance using EBG substrates," IEE Proc. --- Microw. Antennas Propag., Vol. 153, No. 6, 558-563, Dec. 2006.
doi:10.1049/ip-map:20060015 Google Scholar
4. Foroozesh, A. and L. Shafai, "Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 4-19, Jan. 2011.
doi:10.1109/TAP.2010.2090458 Google Scholar
5. Nakamura, T. and T. Fukusako, "Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 2103-2110, Jun. 2011.
doi:10.1109/TAP.2011.2143656 Google Scholar
6. Maruyama, S. and T. Fukusako, "An interpretative study on circularly polarized patch antenna using artificial ground structure," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5919-5924, Nov. 2014.
doi:10.1109/TAP.2014.2357431 Google Scholar
7. Yang, F. and Y. Rahmat-Samii, "A low profile single dipole antenna radiating circularly polarized waves," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 3083-3086, Sep. 2005.
doi:10.1109/TAP.2005.854536 Google Scholar
8. Ta, S. X. and I. Park, "Artificial magnetic conductor-based circularly polarized crossed-dipole antennas: 1. AMC structure with grounding pins," Radio Science, 630-641, May 2017.
doi:10.1002/2016RS006203 Google Scholar
9. Gao, X., X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3522-3530, Aug. 2015.
doi:10.1109/TAP.2015.2434392 Google Scholar
10. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Transactions on Antennas and Propagation, Vol. 17, No. 8, 1459-1463, Aug. 2018. Google Scholar
11. Xu, H. X., S. W. Tang, G. M. Wang, T. Cai, W. Huang, Q. He, S. Sun, and L. Zhou, "Multifunctional microstrip array combining a linear polarizer and focusing metasurface," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3676-3682, 2016.
doi:10.1109/TAP.2016.2565742 Google Scholar
12. Zhao, J. C. and Y. Z. Cheng, "A high-efficiency and broadband reflective 90◦ linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, 255, 2016.
doi:10.1007/s00340-016-6533-6 Google Scholar
13. Zhao, J. C. and Y. Z. Cheng, "Ultrathin dual-band polarization angle independent 90◦ polarization rotator with giant optical activity based on planar chiral metamaterial," Applied Physics B, Vol. 124, 185, 2018.
doi:10.1007/s00340-018-7050-6 Google Scholar
14. Cheng, Y. Z., W. Li, and X. Mao, "Triple-band polarization angle independent 90◦ polarization rotator based on fermat's spiral structure planar chiral metamaterial," Progress In Electromagnetics Research, Vol. 165, 35-45, 2019.
doi:10.2528/PIER18112603 Google Scholar
15. Xu, H. X., G. W. Hu, L. Han, M. H. Jiang, Y. J. Huang, Y. Li, X.M. Yang, X. H Ling, L. Z. Chen, J. L. Zhao, and C. W. Qiu, "Chirality-assisted high]efficiency metasurfaces with independent control of phase, amplitude, and polarization," Advanced Optical Materials, Vol. 7, No. 4, 1801479, Feb. 2019. Google Scholar
16. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2457-2459, Jul. 2010.
doi:10.1109/TAP.2010.2048874 Google Scholar
17. Hwang, K. C., "A novel meander-grooved polarization twist reflector," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 4, 217-219, Apr. 2010.
doi:10.1109/LMWC.2010.2042557 Google Scholar
18. Zhu, X. C., et al., "A novel reflective surface with polarization rotation haracteristic," IEEE Antennas Wireless Propag. Lett., Vol. 12, 968-971, Aug. 2013.
doi:10.1109/LAWP.2013.2276004 Google Scholar
19. Chen, H., et al., "Ultra-wideband polarization conversion metasurfaces," Proc. IEEE 3rd Asia Pac. Conf. Antennas Propag. (APCAP), 1009-1011, Jul. 2014. Google Scholar
20. Zhang, L., P. Zhou, H. Lu, H. Cheng, J. Xie, and L. Deng, "Ultra-thin effective metamaterial polarization rotator based on multiple plasmon resonances," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1157-1160, May 2015.
doi:10.1109/LAWP.2015.2393376 Google Scholar
21. Li, L., Y. J. Li, Z. Wu, F. F. Huo, Y. L. Zhang, and C. S. Zhao, "Novel polarization reconfigurable converter based on multilayer frequency-selective surfaces," Proc. IEEE, Vol. 103, No. 7, 1057-1070, Jul. 2015.
doi:10.1109/JPROC.2015.2437611 Google Scholar
22. Li, L., Y. Li, Z. Wu, F. Huo, Y. Zhang, and C. Zhao, "Novel polarization reconfigurable converter based on multilayer frequency-selective surfaces," Proc. IEEE, Vol. 103, No. 7, 1057-1070, Jul. 2015.
doi:10.1109/JPROC.2015.2437611 Google Scholar
23. Nakano, H., K. Kikkawa, N. Kondo, Y. Iitsuka, and J. Yamauchi, "Low-profile equiangular spiral antenna backed by an EBG reflector," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1309-1318, May 2009.
doi:10.1109/TAP.2009.2016697 Google Scholar