Vol. 101
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-11
Analysis and Optimization of Double-Side Hybrid Excitation Flux-Switching Motor
By
Progress In Electromagnetics Research C, Vol. 101, 219-232, 2020
Abstract
In this paper, a double-side hybrid excitation flux-switching (DSHE-FS) motor employing a double stator structure with special multi-excitations is presented. The high space utilization improves the torque density and power density of DSHE-FS motor. The addition of non-rare-earth permanent magnet material reduces the consumption of rare-earth permanent magnet material. The double-side field windings enable the motor to have more flexible magnetic modulation properties. To investigate the principle of motor operation and flux regulation, the equivalent magnetic circuit method is employed. In order to achieve higher operation performances of the motor in different driving modes, the multi-objective optimization with coupled multi-physical field calculation is carried out. The multi physical comprehensive sensitivity function is defined which couples the electromagnetic performance optimization objective and mechanical performance objective. Then multi-objective genetic algorithm (MOGA) method was used to find a feasible solution set. Response surface (RS) method and parameter scan method are used to further determine the five important dimensions. The electromagnetic characteristics of optimized DSHE-FS motor are evaluated and compared in detail. Moreover, the mechanical analysis is conducted for the cupped rotor of DSHE-FS motor to validate the operation security. Theoretical analysis and simulation results verify the rationality of the DSHE-FS motor and the proposed optimization design method.
Citation
Yunyun Chen Tongle Cai Jiahong Zhuang Xiaoyong Zhu , "Analysis and Optimization of Double-Side Hybrid Excitation Flux-Switching Motor," Progress In Electromagnetics Research C, Vol. 101, 219-232, 2020.
doi:10.2528/PIERC20031401
http://www.jpier.org/PIERC/pier.php?paper=20031401
References

1. Hua, W., H. Zhang, M. Cheng, J. Meng, and C. Hou, "An outer-rotor flux-switching permanent-magnet-machine with wedge-shaped magnets for in-wheel light traction," IEEE Trans. Ind. Electro., Vol. 64, No. 1, 69-80, 2017.
doi:10.1109/TIE.2016.2610940

2. Lee Christopher, H. T., K. T. Chau, and C. Liu, "Electromagnetic design and analysis of magnetless double-rotor dual-mode machines," Progress In Electromagnetics Research, Vol. 142, 333-351, 2013.

3. Zhu, X., Z. Shu, L. Quan, Z. Xiang, and X. Pan, "Design and multi-condition comparison of two outer-rotor flux-switching permanent magnet motors for in-wheel traction applications," IEEE Trans. Ind. Electron., Vol. 64, No. 8, 6137-6148, 2017.
doi:10.1109/TIE.2017.2682025

4. Chen, Y., Y. Ding, X. Li, and X. Zhu, "Design and analysis of less-rare-earth double-stator modulated machine considering multi-operation conditions," IEEE Trans. Appli. Supercond., Vol. 28, No. 3, Art. No. 5201405, 2018.

5. Sun, X., et al., "Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for HEVs using nonlinear lumped parameter equivalent circuit model," IEEE/ASME Trans. Mechatro, Vol. 23, No. 2, 747-757, 2018.
doi:10.1109/TMECH.2018.2803148

6. Hwang, H., S. Bae, and C. Lee, "Analysis and design of a hybrid rare-earth-free permanent magnet reluctance machine by frozen permeability method," IEEE Trans. Magn., Vol. 52, No. 7, 1-4, 2016.

7. Hua, W., et al., "An outer-rotor flux-switching permanent-magnet-machine with wedge-shaped magnets for in-wheel light traction," IEEE Trans. Ind. Electro., Vol. 64, No. 1, 3791-3799, Jan. 2017.

8. Hua, H., et al., "Partitioned stator machines with NdFeB and ferrite magnets," IEEE Trans. Ind. Appl., Vol. 53, No. 3, 1870-1882, 2017.
doi:10.1109/TIA.2016.2645899

9. Awah, C. C., et al., "Comparison of partitioned stator switched slux permanent magnet machines having single- or double-layer windings," IEEE Trans. Magn., Vol. 52, No. 1, 1-10, 2016.
doi:10.1109/TMAG.2015.2477679

10. Zhu, X., Z. Xiang, L. Quan, W. Wu, and Y. Du, "Multi-Mode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles," IEEE Trans. Ind. Electron., Vol. 65, No. 7, 5353-5366, Jul. 2018.
doi:10.1109/TIE.2017.2777408

11. Li, X., et al., "Electromagnetic performance analysis of a new hybrid excited stator-partitioned flux switching permanent magnet machine," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 2016.

12. Sayed, E., Y. Yang, and B. Bilgina, "Comprehensive review of flux barriers in interior permanent magnet synchronous machines," IEEE Access, Vol. 7, 149168-149181, 2019.
doi:10.1109/ACCESS.2019.2947047

13. Du, Y., et al., "Optimal design and analysis of partitioned stator hybrid excitation doubly salient machine," IEEE Access, Vol. 6, 57700-57707, 2018.
doi:10.1109/ACCESS.2018.2872763

14. Chen, M., K. T. Chau, C. H. T. Lee, and C. Liu, "Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets," Progress In Electromagnetics Research, Vol. 153, 23-32, 2015.
doi:10.2528/PIER15072701

15. Zhu, X., et al., "Systematic multi-level optimization design and dynamic control of less-rare-earth hybrid permanent magnet motor for all-climatic electric vehicles," Applied Energy, DOI: 10.1016/j.apenergy.2019.113549.

16. Solmaz, K., G. Ali, M. Amin, A. R. Nasrudin, H. W. Ping, and N. Ud Mohammad, "Design optimization and analysis of AFPM synchronous machine incorporation power density, thermal analysis, and back-EMF THD," Progress In Electromagnetics Research, Vol. 136, 327-367, 2013.

17. Sun, X., et al., "High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Trans. Ind. Electro., Vol. 63, No. 6, 3479-3488, 2016.
doi:10.1109/TIE.2016.2530040

18. Edhah, S. O., J. Y. AlSawalhi, and A. A. AlDurra, "Multi-Objective optimization design of fractional slot concentrated winding permanent magnet synchronous machines," IEEE Access, DOI: 10.1109/ACCESS.2019.2951023.

19. Du, G., et al., "Rotor stress analysis for high speed permanent magnet machines considering assembly gap and temperature gradient," IEEE Transactions on Energy Conversion, 2019, DOI: 10.1109/TEC.2019.2939220.

20. Zhu, X., M. Jiang, Z. Xiang, L. Quan, W. Hua, and M. Cheng, "Design and optimization of a flux-modulated permanent magnet motor based on an airgap-harmonic-orientated design methodology," IEEE Trans. Ind. Electron., DOI: 10.1109/TIE.2019.2934063.

21. Zhu, X., W. Wu, L. Quan, Z. Xiang, and W. Gu, "Design and multi-mbjective stratified optimization of a less-rare-earth hybrid permanent magnets motor with high torque density and low cost," IEEE Transactions on Energy Conversion, Vol. 34, No. 3, 1178-1189, Dec. 2019.
doi:10.1109/TEC.2018.2886316

22. Lei, G., C. Liu, J. Zhu, and Y. Guo, "Techniques for multilevel design optimization of permanent magnet motors," IEEE Transactions on Energy Conversion, Vol. 30, No. 4, 1574-1584, Dec. 2015.
doi:10.1109/TEC.2015.2444434

23. Zhu, X., J. Huang, L. Quan, Z. Xiang, and B. Shi, "Comprehensive sensitivity analysis and multi-objective optimization research of permanent magnet flux-intensifying motors," IEEE Trans. Ind. Electron., Vol. 66, No. 4, 2613-2627, Article No: 0602704, Apr. 2019.
doi:10.1109/TIE.2018.2849961

24. Almandoz, G., et al., "Study of demagnetization risk in PM machines," IEEE Trans. Ind. Appli., 2019, DOI: 10.1109/TIA.2019.2904459.

25. Chen, L. L., et al., "Rotor strength analysis for high-speed segmented surface-mounted permanent magnet synchronous machines," IET Electric Power Applications, Vol. 12, No. 7, 979-990, Jul. 2018.
doi:10.1049/iet-epa.2017.0686