1. Hua, W., H. Zhang, M. Cheng, J. Meng, and C. Hou, "An outer-rotor flux-switching permanent-magnet-machine with wedge-shaped magnets for in-wheel light traction," IEEE Trans. Ind. Electro., Vol. 64, No. 1, 69-80, 2017.
doi:10.1109/TIE.2016.2610940 Google Scholar
2. Lee Christopher, H. T., K. T. Chau, and C. Liu, "Electromagnetic design and analysis of magnetless double-rotor dual-mode machines," Progress In Electromagnetics Research, Vol. 142, 333-351, 2013. Google Scholar
3. Zhu, X., Z. Shu, L. Quan, Z. Xiang, and X. Pan, "Design and multi-condition comparison of two outer-rotor flux-switching permanent magnet motors for in-wheel traction applications," IEEE Trans. Ind. Electron., Vol. 64, No. 8, 6137-6148, 2017.
doi:10.1109/TIE.2017.2682025 Google Scholar
4. Chen, Y., Y. Ding, X. Li, and X. Zhu, "Design and analysis of less-rare-earth double-stator modulated machine considering multi-operation conditions," IEEE Trans. Appli. Supercond., Vol. 28, No. 3, Art. No. 5201405, 2018. Google Scholar
5. Sun, X., Y. Shen, S. Wang, et al. "Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for HEVs using nonlinear lumped parameter equivalent circuit model," IEEE/ASME Trans. Mechatro, Vol. 23, No. 2, 747-757, 2018.
doi:10.1109/TMECH.2018.2803148 Google Scholar
6. Hwang, H., S. Bae, and C. Lee, "Analysis and design of a hybrid rare-earth-free permanent magnet reluctance machine by frozen permeability method," IEEE Trans. Magn., Vol. 52, No. 7, 1-4, 2016. Google Scholar
7. Hua, W., H. Zhang, M. Cheng, et al. "An outer-rotor flux-switching permanent-magnet-machine with wedge-shaped magnets for in-wheel light traction," IEEE Trans. Ind. Electro., Vol. 64, No. 1, 3791-3799, Jan. 2017. Google Scholar
8. Hua, H., Z. Q. Zhu, C. Wang, et al. "Partitioned stator machines with NdFeB and ferrite magnets," IEEE Trans. Ind. Appl., Vol. 53, No. 3, 1870-1882, 2017.
doi:10.1109/TIA.2016.2645899 Google Scholar
9. Awah, C. C., Z. Q. Zhu, Z. Z. Wu, H. L. Zhan, et al. "Comparison of partitioned stator switched slux permanent magnet machines having single- or double-layer windings," IEEE Trans. Magn., Vol. 52, No. 1, 1-10, 2016.
doi:10.1109/TMAG.2015.2477679 Google Scholar
10. Zhu, X., Z. Xiang, L. Quan, W. Wu, and Y. Du, "Multi-Mode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles," IEEE Trans. Ind. Electron., Vol. 65, No. 7, 5353-5366, Jul. 2018.
doi:10.1109/TIE.2017.2777408 Google Scholar
11. Li, X., L. Quan, Y. Chen, et al. "Electromagnetic performance analysis of a new hybrid excited stator-partitioned flux switching permanent magnet machine," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 2016. Google Scholar
12. Sayed, E., Y. Yang, and B. Bilgina, "Comprehensive review of flux barriers in interior permanent magnet synchronous machines," IEEE Access, Vol. 7, 149168-149181, 2019.
doi:10.1109/ACCESS.2019.2947047 Google Scholar
13. Du, Y., W. Lu, X. Zhu, et al. "Optimal design and analysis of partitioned stator hybrid excitation doubly salient machine," IEEE Access, Vol. 6, 57700-57707, 2018.
doi:10.1109/ACCESS.2018.2872763 Google Scholar
14. Chen, M., K. T. Chau, C. H. T. Lee, and C. Liu, "Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets," Progress In Electromagnetics Research, Vol. 153, 23-32, 2015.
doi:10.2528/PIER15072701 Google Scholar
15. Zhu, X., D. Fan, Z. Xiang, et al. "Systematic multi-level optimization design and dynamic control of less-rare-earth hybrid permanent magnet motor for all-climatic electric vehicles," Applied Energy, DOI: 10.1016/j.apenergy.2019.113549. Google Scholar
16. Solmaz, K., G. Ali, M. Amin, A. R. Nasrudin, H. W. Ping, and N. Ud Mohammad, "Design optimization and analysis of AFPM synchronous machine incorporation power density, thermal analysis, and back-EMF THD," Progress In Electromagnetics Research, Vol. 136, 327-367, 2013. Google Scholar
17. Sun, X., L. Chen, H. Jiang, et al. "High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Trans. Ind. Electro., Vol. 63, No. 6, 3479-3488, 2016.
doi:10.1109/TIE.2016.2530040 Google Scholar
18. Edhah, S. O., J. Y. AlSawalhi, and A. A. AlDurra, "Multi-Objective optimization design of fractional slot concentrated winding permanent magnet synchronous machines," IEEE Access, DOI: 10.1109/ACCESS.2019.2951023. Google Scholar
19. Du, G., W. Xu, . J. Zhu, et al. "Rotor stress analysis for high speed permanent magnet machines considering assembly gap and temperature gradient," IEEE Transactions on Energy Conversion, 2019, DOI: 10.1109/TEC.2019.2939220. Google Scholar
20. Zhu, X., M. Jiang, Z. Xiang, L. Quan, W. Hua, and M. Cheng, "Design and optimization of a flux-modulated permanent magnet motor based on an airgap-harmonic-orientated design methodology," IEEE Trans. Ind. Electron., DOI: 10.1109/TIE.2019.2934063. Google Scholar
21. Zhu, X., W. Wu, L. Quan, Z. Xiang, and W. Gu, "Design and multi-mbjective stratified optimization of a less-rare-earth hybrid permanent magnets motor with high torque density and low cost," IEEE Transactions on Energy Conversion, Vol. 34, No. 3, 1178-1189, Dec. 2019.
doi:10.1109/TEC.2018.2886316 Google Scholar
22. Lei, G., C. Liu, J. Zhu, and Y. Guo, "Techniques for multilevel design optimization of permanent magnet motors," IEEE Transactions on Energy Conversion, Vol. 30, No. 4, 1574-1584, Dec. 2015.
doi:10.1109/TEC.2015.2444434 Google Scholar
23. Zhu, X., J. Huang, L. Quan, Z. Xiang, and B. Shi, "Comprehensive sensitivity analysis and multi-objective optimization research of permanent magnet flux-intensifying motors," IEEE Trans. Ind. Electron., Vol. 66, No. 4, 2613-2627, Article No: 0602704, Apr. 2019.
doi:10.1109/TIE.2018.2849961 Google Scholar
24. Almandoz, G., I. Gomez, G. Ugalde, et al. "Study of demagnetization risk in PM machines," IEEE Trans. Ind. Appli., 2019, DOI: 10.1109/TIA.2019.2904459. Google Scholar
25. Chen, L. L., C. S. Zhu, Z. X. Zhong, et al. "Rotor strength analysis for high-speed segmented surface-mounted permanent magnet synchronous machines," IET Electric Power Applications, Vol. 12, No. 7, 979-990, Jul. 2018.
doi:10.1049/iet-epa.2017.0686 Google Scholar