Vol. 103
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-06-24
Analytical Solution of the Zero-Thickness Perfectly-Conducting Circular Disk in the Presence of an Axisymmetric Magnetic Dipole: a Second-Kind Fredholm Integral-Equation Approach
By
Progress In Electromagnetics Research C, Vol. 103, 1-15, 2020
Abstract
The problem of radiation of a magnetic dipole axially symmetric with an infinitesimally thin perfectly conducting circular disk is solved in an exact closed form. This is done by transforming the original dual integral equation system describing the problem into a single second-kind Fredholm integral equation and searching for the solution as a power series. Both low- and high-frequency asymptotic limits are also discussed from which simple approximate solutions are readily derived. Numerical results are provided to validate the proposed formulation.
Citation
Luigi Verolino, Giampiero Lovat, Dario Assante, Amedeo Andreotti, Rodolfo Araneo, Paolo Burghignoli, and Salvatore Celozzi, "Analytical Solution of the Zero-Thickness Perfectly-Conducting Circular Disk in the Presence of an Axisymmetric Magnetic Dipole: a Second-Kind Fredholm Integral-Equation Approach," Progress In Electromagnetics Research C, Vol. 103, 1-15, 2020.
doi:10.2528/PIERC20041504
References

1. Bethe, H. A., "Theory of diffraction by small holes," Physical Review, Vol. 66, No. 7–8, 163, 1944.

2. Bouwkamp, C., "On the diffraction of electromagnetic waves by small circular disks and holes," Philips Research Reports, Vol. 5, 401-422, 1950.

3. Eggimann, W., "Higher-order evaluation of dipole moments of a small circular disk," IRE Trans. Microw. Theory Techn., Vol. 8, No. 5, 573-573, 1960.

4. Eggimann, W. H., "Higher-order evaluation of electromagnetic diffraction by circular disks," IRE Trans. Microw. Theory Techn., Vol. 9, No. 5, 408-418, 1961.

5. Williams, W., "Electromagnetic diffraction by a circular disk," Proc. Cambridge Phil. Soc., Vol. 58, No. 4, 625-630, Cambridge University Press, 1962.

6. Jones, D., "Diffraction at high frequencies by a circular disc," Proc. Cambridge Phil. Soc., Vol. 61, No. 1, 223-245, Cambridge University Press, 1965.

7. Marsland, D., C. Balanis, and S. Brumley, "Higher order diffractions from a circular disk," IEEE Trans. Antennas Propag., Vol. 35, No. 12, 1436-1444, 1987.

8. Duan, D.-W., Y. Rahmat-Samii, and J. P. Mahon, "Scattering from a circular disk: A comparative study of PTD and GTD techniques," Proc. IEEE, Vol. 79, No. 10, 1472-1480, 1991.

9. Nosich, A. I., "The method of analytical regularization in wave-scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas Propag. Mag., Vol. 41, No. 3, 34-49, 1999.

10. Bliznyuk, N. Y., A. I. Nosich, and A. N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axisymmetrically excited by an electric dipole," Microw. Opt. Techn. Lett., Vol. 25, No. 3, 211-216, 2000.

11. Bliznyuk, A. N. N. Y., "Numerical analysis of a dielectric disk antenna," Telecommunications and Radio Engineering, Vol. 61, 273-278, 2004.

12. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.

13. Balaban, M. V., R. Sauleau, T. M. Benson, and A. I. Nosich, "Dual integral equations technique in electromagnetic wave scattering by a thin disk," Progress In Electromagnetics Research B, Vol. 16, 107-126, 2009.

14. Hongo, K., A. D. U. Jafri, and Q. A. Naqvi, "Scattering of electromagnetic spherical wave by a perfectly conducting disk," Progress In Electromagnetics Research, Vol. 129, 315-343, 2012.

15. Di Murro, F., M. Lucido, G. Panariello, and F. Schettino, "Guaranteed-convergence method of analysis of the scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-space," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3610-3620, 2015.

16. Nosich, A. I., "Method of analytical regularization in computational photonics," Radio Sci., Vol. 51, No. 8, 1421-1430, 2016.

17. Lucido, M., G. Panariello, and F. Schettino, "Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method," Radio Sci., Vol. 52, No. 1, 2-14, 2017.

18. Lovat, G., P. Burghignoli, R. Araneo, S. Celozzi, A. Andreotti, D. Assante, and L. Verolino, "Shielding of a perfectly conducting circular disk: Exact and static analytical solution," Progress In Electromagnetics Research C, Vol. 95, 167-182, 2019.

19. Lovat, G., P. Burghignoli, R. Araneo, S. Celozzi, A. Andreotti, D. Assante, and L. Verolino, Progress In Electromagnetics Research, Vol. 167, 1-10, 2020.

20. Saidoglu, N. Y. and A. I. Nosich, "Method of analytical regularization in the analysis of axially symmetric excitation of imperfect circular disk antennas," Computers & Mathematics with Applications, Vol. 79, 2872-2884, 2020.

21. Kocifaj, M., J. Klacka, F. Kundracik, and G. Videen, "Charge-induced electromagnetic resonances in nanoparticles," Ann. Phys., Vol. 527, No. 11–12, 765-769, 2015.

22. Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory, North-Holland Pub. Co., 1966.

23. Lebedev, N. and I. Skal’skaya, "Dual integral equations and the diffraction of electromagnetic waves by a conducting plane with a slit," Soviet Physics-Technical Physics, Vol. 16, 1047-1054, 1972.

23. Lebedev, N. N. and I. P. Skal’skaya, "Dual integral equations and the diffraction of electromagnetic waves by a conducting plane with a slit," Soviet Physics-Technical Physics, Vol. 16, 1047-1054, 1972.

24. Lebedev, N. N. and I. P. Skal'Skaya, "Dual integral equations and diffraction of electromagnetic waves by a thin conducting strip," Soviet Physics-Technical Physics, Vol. 17, 539-545, 1972.

25. Dome, G., E. Gianfelice, L. Palumbo, V. Vaccaro, and L. Verolino, "Longitudinal coupling impedance of a circular iris," Il Nuovo Cimento A (1965–1970), Vol. 104, No. 8, 1241-1255, 1991.

26. Dome, G., L. Verolino, L. Palumbo, and V. G. Vaccaro, "A method for computing the longitudinal coupling impedance of circular apertures in a periodic array of infinite planes," Tech. Rep., cm-P00061056, 1991.

27. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., Wiley, 1999.

28. Chew, W. C., "Waves and Fields in Inhomogenous Media," IEEE Press, 1999.

29. Van Bladel, J., Singular Electromagnetic Fields and Sources, Clarendon Press, 1991.

30. Dudley, D. G., Mathematical Foundations for Electromagnetic Theory, IEEE Press, 1994.

31. Poularikas, A. D., Handbook of Formulas and Tables for Signal Processing, 2nd Ed., CRC Press, 1998.

32. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Ed., Academic Press, 2014.