1. Siegel, P. H., "Terahertz technology," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 910-928, Mar. 2002.
doi:10.1109/22.989974 Google Scholar
2. Sherwin, M., "Terahertz power," Nature, Vol. 420, No. 6912, 131-133, Nov. 2002.
doi:10.1038/420131a Google Scholar
3. Booske, J. H., et al., "Vacuum electronic high power terahertz sources," IEEE Trans. Terahertz Sci. Technol., Vol. 1, No. 1, 54-75, Sep. 2011.
doi:10.1109/TTHZ.2011.2151610 Google Scholar
4. Lewis, R. A., "A review of terahertz sources," J. Phys. D: Appl. Phys., Vol. 47, No. 37, 374001, Sep. 2014.
doi:10.1088/0022-3727/47/37/374001 Google Scholar
5. Bratman, V. L., A. G. Litvak, and E. V. Suvorov, "Mastering the terahertz domain: Sources and applications," Uspekhi Fiz. Nauk, Vol. 181, No. 8, 867, 2011.
doi:10.3367/UFNr.0181.201108f.0867 Google Scholar
6. Fan, S., Y. He, B. S. Ung, and E. Pickwell-MacPherson, "The growth of biomedical terahertz research," J. Phys. D: Appl. Phys., Vol. 47, No. 37, 374009, Sep. 2014.
doi:10.1088/0022-3727/47/37/374009 Google Scholar
7. Linfield, E., "A source of fresh hope," Nat. Photonics, Vol. 1, No. 5, 257-258, May 2007.
doi:10.1038/nphoton.2007.56 Google Scholar
8. Tonouchi, M., "Cutting-edge terahertz technology," Nat. Photonics, Vol. 1, No. 2, 97-105, Feb. 2007.
doi:10.1038/nphoton.2007.3 Google Scholar
9. Mukherjee, P. and B. Gupta, "Terahertz (THz) frequency sources and antennas — A brief review," Int. J. Infrared Millimeter Waves, Vol. 29, No. 12, 1091-1102, Dec. 2008.
doi:10.1007/s10762-008-9423-0 Google Scholar
10. Armstrong, C. M., "The truth about terahertz," IEEE Spectr., Vol. 49, No. 9, 36-41, Sep. 2012.
doi:10.1109/MSPEC.2012.6281131 Google Scholar
11. Viti, L., A. Politano, and M. S. Vitiello, "Black phosphorus nanodevices at terahertz frequencies: Photodetectors and future challenges," APL Mater., Vol. 5, No. 3, 2017.
doi:10.1063/1.4979090 Google Scholar
12. Viti, L., et al., "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, No. 1, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901 Google Scholar
13. Vicarelli, L., et al., "Graphene field-effect transistors as room-temperature terahertz detectors," Nat. Mater., Vol. 11, No. 10, 865-871, 2012.
doi:10.1038/nmat3417 Google Scholar
14. Joye, C. D., J. P. Calame, M. Garven, and B. Levush, "UV-LIGA microfabrication of 220 GHz sheet beam amplifier gratings with SU-8 photoresists," J. Micromechanics Microengineering, Vol. 20, No. 12, 125016, Dec. 2010.
doi:10.1088/0960-1317/20/12/125016 Google Scholar
15. Gamzina, D., et al., "Nano-CNC machining of sub-THz vacuum electron devices," IEEE Trans. Electron Devices, Vol. 63, No. 10, 4067-4073, Oct. 2016.
doi:10.1109/TED.2016.2594027 Google Scholar
16. Ryskin, N. M., et al., "Planar microstrip slow-wave structure for low-voltage V-band traveling-wave tube with a sheet electron beam," IEEE Electron Device Lett., Vol. 39, No. 5, 757-760, May 2018.
doi:10.1109/LED.2018.2821770 Google Scholar
17. Starodubov, A. V., et al., "Planar slow-wave structures for low-voltage millimeter-band vacuum devices (Novel approach for fabrication, numerical and experimental measurements)," 2018 18th Mediterranean Microwave Symposium (MMS), 128-131, Oct. 2018. Google Scholar
18. Starodubov, A. V., A. A. Serdobintsev, A. M. Pavlov, V. V. Galushka, P. V. Ryabukho, and N. M. Ryskin, "A novel approach to microfabrication of planar microstrip meander-line slow wave structures for millimeter-band TWT," 2018 Progress In Electromagnetics Research Symposium (PIERS — Toyama), 506-509, Japan, Aug. 1–4, 2018. Google Scholar
19. Cook, A. M., C. D. Joye, and J. P. Calame, "W-band and D-band traveling-wave tube circuits fabricated by 3D printing," IEEE Access, Vol. 7, 72561-72566, 2019.
doi:10.1109/ACCESS.2019.2920291 Google Scholar
20. Baik, C.-W., et al., "Dispersion retrieval from multi-level ultra-deep reactive-ion-etched microstructures for terahertz slow-wave circuits," Appl. Phys. Lett., Vol. 104, No. 2, 021118, Jan. 2014.
doi:10.1063/1.4862324 Google Scholar
21. Haeff, A. V., "The electron-wave tube — A novel method of generation and amplification of microwave energy," Proc. IRE, Vol. 37, No. 1, 4-10, Jan. 1949. Google Scholar
22. Pierce, J. R., "Waves in electron streams and circuits," Bell Syst. Tech. J., Vol. 30, No. 3, 626-651, Jul. 1951. Google Scholar
23. Kalinin, Y. A. and A. V. Starodubov, "Study of electron-wave microwave amplifiers at high values of the inhomogeneity parameters of the electron beam velocities," Radiophys. Quantum Electron., Vol. 62, No. 1, 26-32, Jun. 2019. Google Scholar
24. Birdsall, C., G. Brewer, and A. Haeff, "The resistive-wall amplifier," Proc. IRE, Vol. 41, No. 7, 865-875, Jul. 1953. Google Scholar
25. Birdsall, C. K. and J. R. Whinnery, "Waves in an electron stream with general admittance walls," J. Appl. Phys., Vol. 24, No. 3, 314-323, Mar. 1953. Google Scholar
26. Lopukhin, V. M. and A. A. Vedenov, "The absorption amplifier," Uspekhi Fiz. Nauk, Vol. 53, No. 5, 69-86, 1954. Google Scholar
27. Rowe, T., J. H. Booske, and N. Behdad, "Metamaterial-enhanced resistive wall amplifiers: Theory and particle-in-cell simulations," IEEE Trans. Plasma Sci., Vol. 43, No. 7, 2123-2131, Jul. 2015. Google Scholar
28. Starodubov, A., et al., "Resistive thin-film coatings as an alternative to classical slow wave structures in millimeter-wave vacuum electron devices," Saratov Fall Meeting 2018: Laser Physics, Photonic Technologies, and Molecular Modeling, 54, Jun. 2019. Google Scholar
29. Rowe, T., N. Behdad, and J. H. Booske, "Metamaterial-enhanced resistive wall amplifier design using periodically spaced inductive meandered lines," IEEE Trans. Plasma Sci., Vol. 44, No. 10, 2476-2484, Oct. 2016. Google Scholar
30. Lota, J., S. Sun, T. S. Rappaport, and A. Demosthenous, "5G uniform linear arrays with beamforming and spatial multiplexing at 28, 37, 64, and 71 GHz for outdoor urban communication: A two-level approach," IEEE Trans. Veh. Technol., Vol. 66, No. 11, 9972-9985, Nov. 2017. Google Scholar
31. Niu, Y., Y. Li, D. Jin, L. Su, and A. V. Vasilakos, "A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges," Wirel. Networks, Vol. 21, No. 8, 2657-2676, Nov. 2015. Google Scholar
32. Pierce, J. R., "The wave picture of microwave tubes," Bell Syst. Tech. J., Vol. 33, No. 6, 1343-1372, Nov. 1954. Google Scholar
33. Uhm, H. S., "Resistive-wall klystron," Phys. Lett. A, Vol. 182, No. 1, 120-124, Nov. 1993. Google Scholar
34. Uhm, H. S., "A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam," Phys. Plasmas, Vol. 1, No. 6, 2038-2052, Jun. 1994. Google Scholar
35. Uhm, H. S., "The resistive-wall klystron as a high-power microwave source," Proceedings Particle Accelerator Conference, Vol. 3, 1527-1529, 1995. Google Scholar
36. Rowe, T., P. Forbes, J. H. Booske, and N. Behdad, "Inductive meandered metal line metamaterial for rectangular waveguide linings," IEEE Trans. Plasma Sci., Vol. 45, No. 4, 654-664, Apr. 2017. Google Scholar
37. Duan, Z., et al., "Review of metamaterial-inspired vacuum electron devices," 2018 IEEE International Vacuum Electronics Conference (IVEC), Vol. 8, 29-30, Apr. 2018. Google Scholar
38. Duan, Z., et al., "Metamaterial-inspired vacuum electron devices and accelerators," IEEE Trans. Electron Devices, Vol. 66, No. 1, 207-218, Jan. 2019. Google Scholar
39. Liu, Y. and J. Tan, "Frequency dependent model of sheet resistance and effect analysis on shielding effectiveness of transparent conductive mesh coatings," Progress In Electromagnetics Research, Vol. 140, 353-368, 2013. Google Scholar
40. Hu, P., et al., "Development of a 0.32-THz folded waveguide traveling wave tube," IEEE Trans. Electron Devices, Vol. 65, No. 6, 2164-2169, Jun. 2018. Google Scholar
41. Morgan, S. P., "Effect of surface roughness on eddy current losses at microwave frequencies," J. Appl. Phys., Vol. 20, No. 4, 352-362, Apr. 1949. Google Scholar
42. Hammerstad, E. O. and F. Bekkadal, Microstrip Handbook, ELAB Report, Norwegian Institute of Technology, 1975.
43. Beker-Jarvis, J., et al., "Measuring the permittivity and permebility of lossy materials: Solids, liquids, metals, building material, and negative-index materials," NIST Tech. Note 1536, 1-5, 2005, [online], available: http://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1536.pdf. Google Scholar
44. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, Aug. 1990. Google Scholar
45. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, No. 2, 387-394, Apr. 1990. Google Scholar
46. Technologies, K., Keysight technologies materials measurement?: Dielectric materials, 2018, [online], available: http://literature.cdn.keysight.com/litweb/pdf/5992-0263EN.pdf.
47. Loudon, R., "The propagation of electromagnetic energy through an absorbing dielectric," J. Phys. A Gen. Phys., Vol. 3, No. 3, 233-245, May 1970. Google Scholar
48. Chung, B.-K. and H.-T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003. Google Scholar
49. Ramprecht, J., M. Norgren, and D. Sjoberg, "Scattering from a thin magnetic layer with a periodic lateral magnetization: Application to electromagnetic absorbers," Progress In Electromagnetics Research, Vol. 83, 199-224, 2008. Google Scholar
50. Koledintseva, M. Y., A. G. Razmadze, A. Y. Gafarov, V. V. Khilkevich, J. L. Drewniak, and T. Tsutaoka, "Attenuation in extended structures coated with thin magneto-dielectric absorber layer," Progress In Electromagnetics Research, Vol. 118, 441-459, 2011. Google Scholar
51. Zhou, M., F. Lu, B. Liu, J. Yang, and X. Zeng, "Electrospun SnO2 submicron fibers for broadband microwave absorption," J. Phys. D. Appl. Phys., Vol. 48, No. 49, 495303, Dec. 2015. Google Scholar