1. Kim, S. H., H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, and Y. H. Lee, "Two-dimensional photonic crystal hexagonal waveguide ring laser," Appl. Phys. Lett., Vol. 81, 2499-2501, 2002.
doi:10.1063/1.1510583 Google Scholar
2. Dinesh Kumar, V., T. Srinivas, and A. Selvarajan, "Investigation of ring resonators in photonic crystal circuits," Photon. Nanostruct., Vol. 2, 199-206, 2004.
doi:10.1016/j.photonics.2004.11.001 Google Scholar
3. Qiang, Z., W. Zhou, and R. A. Soref, "Optical add-drop filters based on photonic crystal ring resonators," Opt. Express, Vol. 15, 1823-1831, 2007.
doi:10.1364/OE.15.001823 Google Scholar
4. Robinson, S. and R. Nakkeeran, "Investigation on two dimensional photonic crystal resonant cavity based band pass filter," Optik, Vol. 123, 451-457, 2012.
doi:10.1016/j.ijleo.2011.05.004 Google Scholar
5. Djavid, M. and M. S. Abrishamian, "Multi-channel drop filters using photonic crystal ring resonators," Optik, Vol. 123, 167-170, 2012.
doi:10.1016/j.ijleo.2011.04.001 Google Scholar
6. Alipour-Banaei, H., F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, "T-shaped channel drop filter based onphotonic crystal ring resonator," Optik, Vol. 125, 4718-4721, 2014.
doi:10.1016/j.ijleo.2014.04.084 Google Scholar
7. Alipour-Banaei, H., F. Mehdizadeh, and S. Serajmohammadi, "A novel 4-channel demultiplexer based on photonic crystal ring resonators," Optik, 2013, http://dx.doi.org/10.1016/j.ijleo.2013.04.117. Google Scholar
8. Alipour Banaeia, H., S. Seraj mohammadib, and F. Mehdizadehc, "Alloptical NOR and NAND gate based on nonlinear photonic crystal ring resonators," Optik, Vol. 125, 5701-5704, 2014.
doi:10.1016/j.ijleo.2014.06.013 Google Scholar
9. Mahmoud, M. Y., G. Bassou, A. Taalbi, and Z. M. Chekroun, "Optical channel drop filter based on photonic crystal ring resonators," Optics Communications, Vol. 285, 368-372, 2012.
doi:10.1016/j.optcom.2011.09.068 Google Scholar
10. Birjandi, M. A. M. and M. R. Rakhshani, "A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators," Optik, 2013, http://dx.doi.org/10.1016/j.ijleo.2013.04.128. Google Scholar
11. Saidani, N., W. Belhadj, and F. Abdel Malek, "Novel all-optical logic gates based photonic crystal waveguide using self imaging phenomena," Optical Quantum Electron., Vol. 47, 1829-1846, 2015.
doi:10.1007/s11082-014-0047-4 Google Scholar
12. Isfahani, B. M., T. Ahamdi Tameh, N. Granpayeh, and A. M. Javan, "All optical NOR gate based on nonlinear photonic crystal microring resonators," Optical Society of America, Vol. 26, 1097-102, May 2009.
doi:10.1364/JOSAB.26.001097 Google Scholar
13. Moungar, A., H. Badaoui, and M. Abri, "16-channels wavelength efficient demultiplexing around 1.31/1.55 µm in 2D photonic crystal slab," Optik, 2019, https://doi.org/10.1016/j.ijleo.2019.04.032. Google Scholar
14. Skauli, T., P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," Journal of Applied Physics, Vol. 94, No. 10, 6447-6455, 2003.
doi:10.1063/1.1621740 Google Scholar
15. Mohammadi, M. and M. Seifouri, "A new proposal for a high-performance 4-channel demultiplexer based on 2D photonic crystal using three cascaded ring resonators for applications in advanced optical systems," Optical and Quantum Electronics, Vol. 51, 350, 2019, https://doi.org/10.1007/s11082-019-2061-z.
doi:10.1007/s11082-019-2061-z Google Scholar
16. Ma, Z. and K. Ogusu, "Channel drop filters using photonic crystal Fabry-Perot resonators," Optics Communications, Vol. 284, No. 5, 1192-1196, March 2011.
doi:10.1016/j.optcom.2010.10.050 Google Scholar
17. Delphi, G., S. Olyaee, M. Seifouri, and A. Mohebzadeh-Bahabady, "Design of an add filter and a 2-channel optical demultiplexer with high-quality factor based on nano-ring resonator," Journal of Computational Electronics, Vol. 4, 2019. Google Scholar
18. Hsiao, F. L. and C. Lee, "A nano-ring resonator based on 2-D hexagonal-lattice photonic crystals," Proceedings of the International Conference on Optical MEMs and Nanophotonics, 107-108, 2009. Google Scholar
19. Andalib, P. and N. Granpayeh, "Optical add/drop filter based on dual curved photonic crystal resonator," Proceedings of the International Conference on Optical MEMs and Nanophotonics, 170-171, 2008. Google Scholar
20. Gupta, N. D. and V. Janyani, "Dense wavelength division Demultiplexing using photonic crystal waveguides based on cavity resonance," Optik, Vol. 125, 5833-5836, 2014.
doi:10.1016/j.ijleo.2014.07.024 Google Scholar
21. Radhouene, M., M. Najjar, M. Chhipa, S. Robinson, and B. Suthar, "Performance optimization of six channels WDM demultiplexer based on photonic crystal structure," Journal of Ovonic Research, Vol. 13, No. 5, 291-297, 2017. Google Scholar
22. Talebzadeh, R., M. Soroosh, and T. Daghooghi, "A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity," IETE Journal of Research, Vol. 62, No. 6, 866-872, 2016.
doi:10.1080/03772063.2016.1217175 Google Scholar
23. Cuesta-Soto, F. L., et al. "All-optical switching structure based on a photonic crystal directional coupler," Opt. Express, Vol. 12, 161-167, 2004.
doi:10.1364/OPEX.12.000161 Google Scholar
24. Grande, M., et al. "Optical filter with very large stopband (≈ 300 nm) based on a photonic-crystal vertical-directional coupler," Opt. Lett., Vol. 34, 3292-3294, 2009.
doi:10.1364/OL.34.003292 Google Scholar
25. Stomeo, T., et al. "Optical filter based on two coupled PhC GaAs-membranes," Opt. Lett., Vol. 35, 411-413, 2010.
doi:10.1364/OL.35.000411 Google Scholar
26. Rahmati, A. T. and N. Granpayeh, "Kerr nonlinear switch based on ultra-compact photonic crystal directional coupler," Optik, Vol. 122, No. 6, 2011.
doi:10.1016/j.ijleo.2010.04.004 Google Scholar
27. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.
doi:10.2528/PIERL12072401 Google Scholar
28. Calo, G. and V. Petruzzelli, "Compact design of photonic crystal ring resonator 2 × 2 routers as building blocks for photonic networks on chip," Journal of the Optical Society of America B: Optical Physics, Vol. 31, No. 3, 517-525, 2014.
doi:10.1364/JOSAB.31.000517 Google Scholar
29. Shirdel, M. and M. A. Mansouri-Birjandi, "Photonic crystal all-optical switch based on a nonlinear cavity," Optik, Vol. 127, No. 8, 3955-3958, 2016.
doi:10.1016/j.ijleo.2016.01.114 Google Scholar
30. Geraili, M. R., et al. "A proposal for an all optical full adder using nonlinear photonic crystal ring resonators," Optik, Vol. 199, Article 163359, 2019. Google Scholar
31. Meng, Z.-M., et al. "Theoretical investigation of integratable photonic crystal nanobeam all-optical switching with ultrafast response and ultralow switching energy," 2020 J. Phys. D: Appl. Phys., Vol. 53, 205105, 2020.
doi:10.1088/1361-6463/ab768c Google Scholar
32. Ooka, Y., et al. "Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolighography," Opt. Express, Vol. 25, No. 2, 1521-1528, 2017.
doi:10.1364/OE.25.001521 Google Scholar
33. Dong, G., Y. Wang, and X. Zhang, "High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity," Optics Letters, Vol. 43, No. 24, 5977-5980, 2018.
doi:10.1364/OL.43.005977 Google Scholar