Vol. 105
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-09-22
A New Non-Convex Approach for Compressive Sensing MRI
By
Progress In Electromagnetics Research C, Vol. 105, 203-215, 2020
Abstract
Compressive sensing (CS) is an effective method for reconstructing magnetic resonance imaging (MRI) image from under-determined linear system (ULS). However, how to improve the accuracy of MRI image reconstructed by CS is still a serious problem, especially in noisy conditions. To solve this problem, in this paper, we propose a novel approach, dubbed as regularized maximum entropy function (RMEF) minimization algorithm. Specifically, motivated by the entropy function in information theory, we propose a maximum entropy function (MEF) to approximate Lq-norm (0 < q < 1) as sparsity promoting objectives, and then the regularization mechanism for improving the de-noising performance is adopted. Combining the above two ideas, a new objective function of RMEF method is proposed, and the global minimum is iteratively solved. We further analyze the convergence to verify the robustness of the RMEF algorithm. Experiments demonstrate the state-of-the-art performances of the proposed RMEF algorithm and show that the RMEF achieves higher PSNR and SSIM than other widely-adopted methods in MRI image recovery.
Citation
Huihui Yue, and Xiangjun Yin, "A New Non-Convex Approach for Compressive Sensing MRI," Progress In Electromagnetics Research C, Vol. 105, 203-215, 2020.
doi:10.2528/PIERC20051505
References

1. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 4, 1289-1306, 2006.        Google Scholar

2. Baraniuk, R. G., E. Candes, R. Nowak, and M. Vetterli, "Compressive sampling," IEEE Signal Processing Magazine, Vol. 25, 12-13, 2008.        Google Scholar

3. Candés, E. J. and M. B.Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 2, 21-30, 2008.        Google Scholar

4. Huang, S. and T. D. Tran, "Sparse signal recovery via generalized entropy functions minimization," Eprint Arxiv, 2017.        Google Scholar

5. Candés, E. J., "The restricted isometry property and its implications for compressed sensing," Comptes rendus-Math´ematique, Vol. 346, 589-592, 2008.        Google Scholar

6. Natarajan, B. K., "Sparse approximate solutions to linear systems," SIAM Journal on Computing, Vol. 2, 227-234, 1995.        Google Scholar

7. Wang, J., S. Kwon, P. Li, and B. Shim, "Recovery of sparse signals via generalized orthogonal matching pursuit: A new analysis," IEEE Transactions on Signal Processing, Vol. 64, 1076-1089, 2016.        Google Scholar

8. Lee, J., G. T. Gil, and H. L. Yong, "Channel estimation via orthogonal matching pursuit for hybrid mimo systems in millimeter wave communications," IEEE Transactions on Communications, Vol. 64, 2370-2386, 2016.        Google Scholar

9. Wen, J., Z. Zhou, J. Wang, X. Tang, and Q. Mo, "A sharp condition for exact support recovery with orthogonal matching pursuit," IEEE Transactions on Signal Processing, Vol. 6, 1370-1382, 2017.        Google Scholar

10. Liu, J., C. Zhang, and C. Pan, "Priori-information hold subspace pursuit: A compressive sensing-based channel estimation for layer modulated TDS-OFDM," IEEE Trans. Broadcast., Vol. 99, 1-9, 2018.        Google Scholar

11. Foucart, S. and M. J. Lai, "Sparsest solutions of underdetermined linear systems via Lp-minimization for 0 < p ≤ 1," Applied and Computational Harmonic Analysis, Vol. 3, 395-407, 2009.        Google Scholar

12. Hurley, N. and S. Rickard, "Comparing measures of sparsity," IEEE Transactions on Information Theory, Vol. 10, 4723-4741, 2009.        Google Scholar

13. Kose, K., O. Gunay, and A. E. Ceti, "Compressive sensing using the modified entropy functional," Digital Signal Processing, Vol. 24, 63-70, 2014.        Google Scholar

14. Figueiredo, M. A. T., R. D. Nowak, and S. J.Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, 586-597, 2008.        Google Scholar

15. Qiao, B., X. Zhang, C.Wang, H. Zhang, and X. Chen, "Sparse regularization for force identification using dictionaries," J. Sound Vib., Vol. 368, 71-86, 2016.        Google Scholar

16. Wang, Y., S. Xie, and Z. Xie, "Fista-based papr reduction method for tone reservation’s OFDM system," IEEE Wireless Communications Letters, Vol. 7, No. 3, 300-303, 2017.        Google Scholar

17. Metzler, C. A., A. Maleki, and R. G. Baraniuk, "From denoising to compressed sensing," IEEE Transactions on Information Theory, Vol. 62, 5117-5144, 2016.        Google Scholar

18. Metzler, C. A., A. Mousavi, and R. G. Baraniuk, "Learned D-AMP: Principled neural network based compressive image recovery," Advances in Neural Information Processing Systems, 2017.        Google Scholar

19. Chen, L. and Y. Gu, "On the null space constant for Lp minimization," IEEE Signal Processing Letters, Vol. 10, 1600-1603, 2015.        Google Scholar

20. Wang, J. and B. Shim, "A simple proof of the mutual incoherence condition for orthogonal matching pursuit," Mathematics, 2011.        Google Scholar

21. Barnett, A. G., J. Beyersmann, and A. Allignol, "The time-dependent bias and its effect on extra length of stay due to nosocomial infection," Value in Health, Vol. 2, 381-386, 2011.        Google Scholar

22. Bolyog, B. and G. Pap, "On conditional least squares estimation for affine diffusions based on continuous time observations," Statistical Inference for Stochastic Processes, Vol. 4, 1-35, 2017.        Google Scholar

23. Abgrall, R., D. Amsallem, and R. Crisonovan, "Robust model reduction of hyperbolic problems by L1-norm minimization and dictionary approximation," Advanced Modeling and Simulation in Engineering Sciences, Vol. 1, 1, 2016.        Google Scholar

24. Zhao, Y., Z. Liu, and Y. Wang, "Sparse coding algorithm with negentropy and weighted L1-norm for signal reconstruction," Entropy, Vol. 1, 599, 2017.        Google Scholar

25. Zheng, L., A. Maleki, H. Weng, X. Wang, and T. Long, "Does lp-minimization outperform l1-minimization," IEEE Transactions on Information Theory, Vol. 63, 6896-6935, 2017.        Google Scholar

26. Saab, R, R. Chartrand, and O. Yilmaz, "Stable sparse approximations via nonconvex optimization," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 3885-3888, 2008.        Google Scholar

27. Pant, J. K., W. Lu, and A. Antoniou, "Unconstrained regularized Lp norm based algorithm for the reconstruction of sparse signals," IEEE International Symposium on Circuits & Systems, 1740-1743, 2011.        Google Scholar

28. Pant, J. K., W. Lu, and A. Antoniou, "New improved algorithms for compressive sensing based on Lp-norm," IEEE Trans. Circuits and Systems II: Express Briefs, Vol. 3, 198-202, 2014.        Google Scholar

29. Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Found. Trends Mach. Learn., Vol. 1, 1-122, 2011.        Google Scholar

30. Xie, Q., C. Ma, and C. Guo, "Image fusion based on the △1-TV energy function," Entropy, Vol. 16, 6099-6115, 2014.        Google Scholar

31. Du, S. and M. Chen, "A new smoothing modified three-term conjugate gradient method for L1-norm minimization problem," Journal of Inequalities and Applications, Vol. 1, 105, 2018.        Google Scholar

32. Lai, M. J., Y. Xu, and W. Yin, "Improved iteratively reweighted least squares for unconstrained smoothed Lq minimization," SIAM Journal on Numerical Analysis, Vol. 51, 927-957, 201.        Google Scholar

33. Li, Q., S. Y. Liang, and Q. Li, "Incipient fault diagnosis of rolling bearings based on impulse-step impact dictionary and re-weighted minimizing nonconvex penalty Lq regular technique," Entropy, Vol. 19, 2017.        Google Scholar

34. Wipf, D. and S. Nagarajan, "Iterative reweighted L1 and L2 methods for finding sparse solutions," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, 317-329, 2013.        Google Scholar

35. Ye, X., W. Zhu, and A. Zhang, "Sparse channel estimation of MIMO-OFDM systems with unconstrained smoothed L0-norm-regularized least squares compressed sensing," EURASIP Journal on Wireless Communications and Networking, Vol. 1, 282, 2013.        Google Scholar

36. Arias-Castro, E. and Y. C. Eldar, "Noise folding in compressed sensing," IEEE Signal Processing Letters, Vol. 18, 478-481, 2011.        Google Scholar

37. Yang, X., Q. Cui, E. Dutkiewicz, and X. Huang, "Anti-noise-folding regularized subspace pursuit recovery algorithm for noisy sparse signals," Proceeding of the IEEE Wireless Communications and Networking Conference, 275-280, Istanbul, Turkey, April 6-9, 2014.        Google Scholar

38. Lu, Z., "Iterative reweighted minimization methods for lp regularized unconstrained nonlinear programming," Mathematical Programming, Vol. 147, 277-307, 2014.        Google Scholar

39. Mourad, N., J. P. Reilly, and T. Kirubarajan, "Majorization-minimization for blind source separation of sparse sources," Signal Processing, Vol. 131, 120-133, 2017.        Google Scholar

40. Oh, J. and N. Kwak, "Generalized mean for robust principal component analysis," Pattern Recognition, Vol. 54, 116-127, 2016.        Google Scholar

41. Zhou, W., Y. B. Sun, Q. S. Liu, and W. U. Min, "L0 group sparse RPCA model and algorithm for moving object detection," Acta Electronica Sinica, Vol. 44, No. 3, 627-632, 2016.        Google Scholar

42. Xu, D., X. Gao, X. Fan, D. Zhao, and W. Gao, "ODD: An algorithm of online directional dictionary learning for sparse representation," Proceedings of the Pacific Rim Conference on Multimedia, Vol. 10736, 939-947, Harbin, China, September 28-29, 2017.        Google Scholar