Vol. 103
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-07-21
Variable Diagonal Loading Based Robust Concentric Hexagonal Antenna Array with Low Side Lobe Level Using Tapering Windows
By
Progress In Electromagnetics Research C, Vol. 103, 251-263, 2020
Abstract
In this paper, the performance of a concentric hexagonal antenna array (CHAA) is investigated with the exploitation of a robust variable diagonal loading (VDL) technique in the presence of direction of arrival (DOA) mismatch. The performance of minimum variance distortionless response (MVDR) based CHAA is compared with the performance of existing MVDR based concentric circular antenna arrays (CCAAs), and it is found that the proposed MVDR based CHAA provides 25.54% narrow half-power beamwidth (HPBW) and lower side lobe level than the existing MVDR based CCAAs. When DOA mismatch occurs between main beam steering direction and actual signal-of-interest (SOI) direction, the performance of MVDR based CHAA is deteriorated. In the case of DOA mismatch, to ameliorate the performance of CHAA, this paper proposes VDL technique for the CHAA processor and compare the performance of proposed robust CHAA with existing robust CHAAs. The proposed VDL based robust CHAA delivers 88.37% and 78.56% higher output power for 2˚ DOA mismatch than existing fixed diagonal loading (FDL) and optimal diagonal loading (ODL) based CHAAs, respectively. Several tapering window functions are proposed to reduce the side lobe level of CHAA. Performance of the proposed beamformer is analyzed utilizing MATLAB environment in various scenarios.
Citation
Md. Yeakub Ali, Md. Selim Hossain, and Md. Farhamdur Reza, "Variable Diagonal Loading Based Robust Concentric Hexagonal Antenna Array with Low Side Lobe Level Using Tapering Windows," Progress In Electromagnetics Research C, Vol. 103, 251-263, 2020.
doi:10.2528/PIERC20060604
References

1. Viani, F., et al. "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.        Google Scholar

2. Godara, L. C., Smart Antennas, CRC Press, 2004.

3. Fernandez-Olvera, A. D. J., D. Melazzi, and V. Lancellotti, "Beam-forming and beam-steering capabilities of a reconfigurable plasma antenna array," Progress In Electromagnetics Research C, Vol. 65, 11-22, 2016.        Google Scholar

4. Khan, M. Z. U., et al. "Robust LCMV beamformer for direction of arrival mismatch without beam broadening," Wireless Personal Communications, Vol. 104, No. 1, 21-36, 2019.        Google Scholar

5. Pappula, L. and D. Ghosh, "Linear antenna array synthesis using cat swarm optimization," AEU-International Journal of Electronics and Communications, Vol. 68, No. 6, 540-549, 2014.        Google Scholar

6. Ram, Gopi, et al., IEEE Transactions on Antennas and Propagation, "Cat swarm optimization as applied to time-modulated concentric circular antenna array: Analysis and comparison with other stochastic optimization methods,", Vol. 63, No. 9, 4180-4183, 2015.        Google Scholar

7. Reza, M. F. and M. S. Hossain, "Robust concentric circular antenna array with variable loading technique in the presence of look direction disparity," Progress In Electromagnetics Research M, Vol. 57, 35-43, 2017.        Google Scholar

8. Ganz, M. W., R. L. Moses, and S. L. Wilson, "Convergence of the SMI and the diagonally loaded SMI algorithms with weak interference," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 3, 394-399, 1990.        Google Scholar

9. Gan, L. and Z. Yi, "Automatic computation of diagonal loading factor for robust adaptive beamforming based on Gaussian distribution," AEU-International Journal of Electronics and Communications, Vol. 67, No. 7, 570-573, 2013.        Google Scholar

10. Li, J., P. Stoica, and Z. Wang, "On robust Capon beamforming and diagonal loading," IEEE Transactions on Signal Processing, Vol. 51, No. 7, 1702-1715, 2003.        Google Scholar

11. Hossain, M. S., L. C. Godara, and M. R. Islam, "Efficient robust broadband beamforming algorithms using variable loading," IEEE Latin America Transactions, Vol. 10, No. 3, 1697-1702, 2012.        Google Scholar

12. Li, J., P. Stoica, and Z. Wang, "On robust Capon beamforming and diagonal loading," IEEE Transactions on Signal Processing, Vol. 51, No. 7, 1702-1715, 2003.        Google Scholar

13. Wang, W., R. Wu, and J. Liang, "A novel diagonal loading method for robust adaptive beamforming," Progress In Electromagnetics Research C, Vol. 18, 245-255, 2011.        Google Scholar

14. Reza, M. F. and M. S. Hossain, "Performance investigation of robust concentric circular antenna array beamformer in the presence of look direction disparity," AEU-International Journal of Electronics and Communications, Vol. 82, 52-57, 2017.        Google Scholar

15. Song, A., et al. "Widely linear generalized sidelobe canceling beamforming with variable diagonal loading," AEU-International Journal of Electronics and Communications, Vol. 76, 77-85, 2017.        Google Scholar

16. Ali, M. Y., M. S. Hossain, and M. F. Reza, "Robust hexagonal antenna array with optimal diagonal loading in the presence of steering angle disparity," IEEE 4th International Conference on Electrical Information and Communication Technology (EICT), 1-5, 2019.        Google Scholar

17. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.        Google Scholar

18. Bera, R., et al. "Comparative study of circular and hexagonal antenna array synthesis using improved particle swarm optimization," Procedia Comp. Sc. (Science Direct), Vol. 45, 651-660, 2015.        Google Scholar

19. Liu, C., Y. Liu, Y. Zhao, and D. Hu, "Robust adaptive wideband beamforming using probability- constrained optimization," Progress In Electromagnetics Research C, Vol. 52, 163-172, 2014.        Google Scholar

20. Huang, Y., M. Zhou, and S. A. Vorobyov, "New designs on MVDR robust adaptive beamforming based on optimal steering vector estimation," IEEE Transactions on Signal Processing, Vol. 67, No. 14, 3624-3638, 2019.        Google Scholar

21. Qin, L., M. Wu, and Z. Dong, "Robust adaptive beamforming using multi-snapshot direct data domain approach," AEU-International Journal of Electronics and Communications, Vol. 75, 124-129, 2017.        Google Scholar

22. Gu, Y., et al. "Robust adaptive beamforming based on interference covariance matrix sparse reconstruction," Signal Processing, Vol. 96, 375-381, 2014.        Google Scholar

23. Shen, F., F. Chen, and J. Song, "Robust adaptive beamforming based on steering vector estimation and covariance matrix reconstruction," IEEE Communications Letters, Vol. 19, No. 9, 1636-1639, 2015.        Google Scholar

24. Huang, L., et al. "Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method," IEEE Transactions on Signal Processing, Vol. 63, No. 7, 1643-1650, 2015.        Google Scholar

25. Mandal, D., S. P. Ghoshal, and A. K. Bhattacharjee, "Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 31, No. 6, 667-680, 2010.        Google Scholar

26. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, 2004.        Google Scholar

27. Reza, M., M. Hossain, and M. Rashid, "Robust centered element concentric circular antenna array with low side lobe using variable loading and tapering windows in the presence of array imperfections," International Journal of Antennas and Propagation, 1-10, 2017.        Google Scholar

28. Nofal, M., S. Aljahdali, and Y. Albagory, "Tapered beamforming for concentric ring arrays," AEU- International Journal of Electronics and Communications, Vol. 67, No. 1, 58-63, 2013.        Google Scholar

29. Dessouky, M., H. Sharshar, and Y. Albagory, "A novel tapered beamforming window for uniform concentric circular arrays," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2077-2089, 2006.        Google Scholar

30. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.        Google Scholar

31. Wang, Y.-F., et al. "Wideband circularly polarized magneto-electric dipole 1x2 antenna array for millimeter-wave applications," IEEE Access, Vol. 8, 27516-27523, 2020.        Google Scholar

32. Donelli, M., T. Moriyama, and M. Manekiya, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.        Google Scholar

33. Yuri, N. and P. Ilia, "Probability of false peaks occurring via circular and concentric antenna arrays DOA estimation," 2016 39th International Conference on Telecommunications and Signal Processing (TSP), 178-181, 2016.        Google Scholar

34. Sarkar, P. K. and M. F. Reza, "Performance analysis of uniform concentric circular antenna array beamformer using different DOA estimation technique," 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), 320-324, 2018.        Google Scholar

35. Diniz, P. S., E. A. Da Silva, and S. L. Netto, Digital Signal Processing: System Analysis and Design, Cambridge University Press, 2010.