1. Boybay, M. S. and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Trans. Instrum. Meas., Vol. 61, No. 11, 3039-3046, Nov. 2012.
doi:10.1109/TIM.2012.2203450 Google Scholar
2. Lee, C.-S. and C.-L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 8, 563-565, Aug. 2014.
doi:10.1109/LMWC.2014.2318900 Google Scholar
3. Yang, C.-L., C.-S. Lee, K.-W. Chen, and K.-Z. Chen, "Noncontact measurement of complex permittivity and thickness by using planar resonators," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 1, 247-257, Jan. 2016.
doi:10.1109/TMTT.2015.2503764 Google Scholar
4. Naqui, J., C. Damm, A. Wiens, R. Jakoby, L. Su, J. Mata-Contreras, and F. Martın, "Transmission lines loaded with pairs of stepped impedance resonators: Modeling and application to differential permittivity measurements," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3864-3877, Oct. 4, 2016.
doi:10.1109/TMTT.2016.2610423 Google Scholar
5. Puentes, M., C. Weiß, M. Schußler, and R. Jakoby, "Sensor array based on split ring resonators for analysis of organic tissues," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, Baltimore, MD, USA, Jun. 2011. Google Scholar
6. Puentes, M., Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment, Springer, 2014.
doi:10.1007/978-3-319-06041-5
7. Hardinata, S., F. Deshours, G. Alquie, H. Kokabi, and F. Koskas, "Miniaturization of microwave biosensor for non-invasive measurements of materials and biological tissues," IPTEK Journal of Proceedings Series, Vol. 1, 90-93, Jan. 29, 2018. Google Scholar
8. Chretiennot, T., D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 2, 972-978, Feb. 2013.
doi:10.1109/TMTT.2012.2231877 Google Scholar
9. Elwi, T. A. and W. J. Khudhayer, "A passive wireless gas sensor based on microstrip antenna with copper nanorods," Progress In Electromagnetics Research B, Vol. 55, 347-364, 2013.
doi:10.2528/PIERB13082002 Google Scholar
10. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors J., Vol. 14, No. 5, 1345-1351, May 2014.
doi:10.1109/JSEN.2013.2295312 Google Scholar
11. Withayachumnankul, W., K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, "Metamaterial-based microfluidic sensor for dielectric characterization," Sens. Actuators A: Phys., Vol. 189, 233-237, Jan. 2013.
doi:10.1016/j.sna.2012.10.027 Google Scholar
12. Lee, H.-J. and J.-G. Yook, "Biosensing using split-ring resonators at microwave regime," Appl. Phys. Lett., Vol. 92, No. 25, 254103, 2008.
doi:10.1063/1.2946656 Google Scholar
13. Grenier, K., et al., "Integrated broadband microwave and microfluidic sensor dedicated to bioengineering," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 12, 3246-3253, Dec. 2009.
doi:10.1109/TMTT.2009.2034226 Google Scholar
14. Chen, T., D. Dubuc, and K. Grenier, "Resonant-based microwave biosensor for physiological liquid identification," Proc. Eur. Microw. Conf., 448-450, Amsterdam, The Netherland, Oct./Nov. 2012. Google Scholar
15. Chretiennot, T., D. Dubuc, and K. Grenier, "Optimized electromagnetic interaction microwave resonator/microfluidic channel for enhanced liquid bio-sensor," Proc. Eur. Microw. Conf., 464-467, Nuremberg, Germany, Oct. 2013. Google Scholar
16. Chretiennot, T., D. Dubuc, and K. Grenier, "Double stub resonant biosensor for glucose concentrations quantification of multiple aqueous solutions," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, Tampa, FL, USA, Jun. 2014. Google Scholar
17. Ekmekci, E. and G. Turhan-Sayan, "Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate," Appl. Phys. A, Solids Surf., Vol. 110, No. 1, 189-197, Jan. 2013.
doi:10.1007/s00339-012-7113-1 Google Scholar
18. Wongkasem, N. and M. Ruiz, "Multi-negative index band metamaterial-inspired microfluidic sensors," Progress In Electromagnetics Research C, Vol. 94, 29-41, 2019.
doi:10.2528/PIERC19041503 Google Scholar
19. Damm, C., M. Schußler, M. Puentes, H. Maune, M. Maasch, and R. Jakoby, "Artificial transmission lines for high sensitive microwave sensors," Proc. IEEE Sensors Conf., 755-758, Christchurch, New Zealand, Oct. 2009. Google Scholar
20. Damm, C., Artificial Transmission Line Structures for Tunable Microwave Components and Microwave Sensors, Shaker Verlag, 2011.
21. Turgul, V. and I. Kale, "Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing," Sens. Actuators A: Phys., Vol. 277, 65-72, 2018.
doi:10.1016/j.sna.2018.03.041 Google Scholar
22. Turgul, V. and I. Kale, "Sensitivity of non-invasive RF/microwave glucose sensors and fundamental factors and challenges affecting measurement accuracy," Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-5, Houston, TX, USA, May 14–17, 2018. Google Scholar