Vol. 107
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-07
Fractal Minkowski-Shaped Resonator for Noninvasive Biomedical Measurements: Blood Glucose Test
By
Progress In Electromagnetics Research C, Vol. 107, 143-156, 2021
Abstract
This work presents a noninvasive measurement technique to detect the blood glucose level for diabetic individuals using a fractal microwave resonator printed on an FR-4 substrate. The proposed fractal is based on the 1st order of Minkowski open loops (MOL) coupled with an open-stub transmission line (OSTL) to increase the resonator selectivity at 2.45 GHz. Moreover, an air gap in the middle path of the OSTL is filed with multi wall carbon nanotubes patch (CNT) to increase the field fringing at a specific region. The proposed resonator is designed numerically with CST Microwave Studio. The size limitations for biomedical devices are considered to account for wearable applications. Later, an analytical study is presented on the proposed resonator sensitivity. The detection technique is based on the resonant frequency tuning, bandwidth variation, impedance matching change, and phase displacement for the S-parameters in the S11 and S12 spectra. The sample under test is mounted on an CNT patch of the OSTL which employs the characterization of the specimen. The proposed design idea could be generalized for a wide variety of biomedical detection liquids.
Citation
Sarah Majid Obaid, Taha Ahmed Elwi, and Muhammad Ilyas, "Fractal Minkowski-Shaped Resonator for Noninvasive Biomedical Measurements: Blood Glucose Test," Progress In Electromagnetics Research C, Vol. 107, 143-156, 2021.
doi:10.2528/PIERC20072603
References

1. Boybay, M. S. and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Trans. Instrum. Meas., Vol. 61, No. 11, 3039-3046, Nov. 2012.
doi:10.1109/TIM.2012.2203450

2. Lee, C.-S. and C.-L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 8, 563-565, Aug. 2014.
doi:10.1109/LMWC.2014.2318900

3. Yang, C.-L., C.-S. Lee, K.-W. Chen, and K.-Z. Chen, "Noncontact measurement of complex permittivity and thickness by using planar resonators," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 1, 247-257, Jan. 2016.
doi:10.1109/TMTT.2015.2503764

4. Naqui, J., C. Damm, A. Wiens, R. Jakoby, L. Su, J. Mata-Contreras, and F. Martın, "Transmission lines loaded with pairs of stepped impedance resonators: Modeling and application to differential permittivity measurements," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3864-3877, Oct. 4, 2016.
doi:10.1109/TMTT.2016.2610423

5. Puentes, M., C. Weiß, M. Schußler, and R. Jakoby, "Sensor array based on split ring resonators for analysis of organic tissues," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, Baltimore, MD, USA, Jun. 2011.

6. Puentes, M., Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment, Springer, Heidelberg, Germany, 2014.
doi:10.1007/978-3-319-06041-5

7. Hardinata, S., F. Deshours, G. Alquie, H. Kokabi, and F. Koskas, "Miniaturization of microwave biosensor for non-invasive measurements of materials and biological tissues," IPTEK Journal of Proceedings Series, Vol. 1, 90-93, Jan. 29, 2018.

8. Chretiennot, T., D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 2, 972-978, Feb. 2013.
doi:10.1109/TMTT.2012.2231877

9. Elwi, T. A. and W. J. Khudhayer, "A passive wireless gas sensor based on microstrip antenna with copper nanorods," Progress In Electromagnetics Research B, Vol. 55, 347-364, 2013.
doi:10.2528/PIERB13082002

10. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors J., Vol. 14, No. 5, 1345-1351, May 2014.
doi:10.1109/JSEN.2013.2295312

11. Withayachumnankul, W., K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, "Metamaterial-based microfluidic sensor for dielectric characterization," Sens. Actuators A: Phys., Vol. 189, 233-237, Jan. 2013.
doi:10.1016/j.sna.2012.10.027

12. Lee, H.-J. and J.-G. Yook, "Biosensing using split-ring resonators at microwave regime," Appl. Phys. Lett., Vol. 92, No. 25, 254103, 2008.
doi:10.1063/1.2946656

13. Grenier, K., et al., "Integrated broadband microwave and microfluidic sensor dedicated to bioengineering," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 12, 3246-3253, Dec. 2009.
doi:10.1109/TMTT.2009.2034226

14. Chen, T., D. Dubuc, and K. Grenier, "Resonant-based microwave biosensor for physiological liquid identification," Proc. Eur. Microw. Conf., 448-450, Amsterdam, The Netherland, Oct./Nov. 2012.

15. Chretiennot, T., D. Dubuc, and K. Grenier, "Optimized electromagnetic interaction microwave resonator/microfluidic channel for enhanced liquid bio-sensor," Proc. Eur. Microw. Conf., 464-467, Nuremberg, Germany, Oct. 2013.

16. Chretiennot, T., D. Dubuc, and K. Grenier, "Double stub resonant biosensor for glucose concentrations quantification of multiple aqueous solutions," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, Tampa, FL, USA, Jun. 2014.

17. Ekmekci, E. and G. Turhan-Sayan, "Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate," Appl. Phys. A, Solids Surf., Vol. 110, No. 1, 189-197, Jan. 2013.
doi:10.1007/s00339-012-7113-1

18. Wongkasem, N. and M. Ruiz, "Multi-negative index band metamaterial-inspired microfluidic sensors," Progress In Electromagnetics Research C, Vol. 94, 29-41, 2019.
doi:10.2528/PIERC19041503

19. Damm, C., M. Schußler, M. Puentes, H. Maune, M. Maasch, and R. Jakoby, "Artificial transmission lines for high sensitive microwave sensors," Proc. IEEE Sensors Conf., 755-758, Christchurch, New Zealand, Oct. 2009.

20. Damm, C., Artificial Transmission Line Structures for Tunable Microwave Components and Microwave Sensors, Shaker Verlag, Aachen, Germany, 2011.

21. Turgul, V. and I. Kale, "Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing," Sens. Actuators A: Phys., Vol. 277, 65-72, 2018.
doi:10.1016/j.sna.2018.03.041

22. Turgul, V. and I. Kale, "Sensitivity of non-invasive RF/microwave glucose sensors and fundamental factors and challenges affecting measurement accuracy," Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-5, Houston, TX, USA, May 14–17, 2018.