1. Zimmerman, T. G., "Personal area networks: Near-field intra-body communication,", M.S. thesis, MIT Media Lab., Cambridge, MA, Sep. 1995.
doi:10.1109/EMBC.2012.6346971 Google Scholar
2. Kobayashi, T., Y. Shimatani, and M. Kyoso, "Application of near-field intra-body communication and spread spectrum technique to vital-sign monitor," Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 4517-4520, 2012. Google Scholar
3. IEEE Standard for Local and Metropolitan Area Networks — Part 15.6: Wireless Body Area Networks, IEEE Standard 02.15.6-2012, , 1-271, 2012.
doi:10.1109/TBME.2013.2254714
4. Seyedi, M., B. Kibret, D. T. H. Lai, and M. Faulkner, "A survey on intrabody communications for body area network applications," IEEE Transactions on Biomedical Engineering, Vol. 60, No. 8, 2067-2079, 2013.
doi:10.1109/TIM.2012.2205491 Google Scholar
5. Lucev, Z., I. Krois, and M. Cifrek, "A capacitive intrabody communication channel from 100 kHz to 100 MHz," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 12, 3280-3289, 2012.
doi:10.1109/TBME.2010.2093933 Google Scholar
6. Xu, R., H. Zhu, and J. Yuan, "Electric-field intrabody communication channel modeling with finite-element method," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 3, 705-712, Mar. 2011.
doi:10.1109/TBME.2013.2289946 Google Scholar
7. Callejon, M. A., J. Reina-Tosina, D. Naranjo-Hernandez, and L. M. Roa, "Galvanic coupling transmission in intrabody communication: A finite element approach," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 3, 775-783, 2014. Google Scholar
8. Pun, S. H., Y. M. Gao, P. U. Mak, M. I. Vai, and M. Du, "Quasi-static modeling of human limb for intra-body communications with experiments," IEEE Trans. Inf. Technol. Biomed., Vol. 15, No. 6, 870-876, Nov. 2011.
doi:10.1016/j.sna.2006.04.044 Google Scholar
9. Hachisuka, K., Y. Terauchi, Y. Kishi, et al. "Simplified circuit modeling and fabrication of intrabody communication devices," Sens. Actuators A, Vol. 130–131, 322-330, Jun. 2006.
doi:10.1109/TAP.2013.2246534 Google Scholar
10. Haga, N., K. Saito, M. Takahashi, et al. "Equivalent circuit of intrabody communication channels inducing conduction currents inside the human body," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2807-2816, 2013.
doi:10.1109/JBHI.2014.2301165 Google Scholar
11. Kibret, B., M. Seyedi, D. T. Lai, et al. "Investigation of galvanic-coupled intrabody communication using the human body circuit model," IEEE J. Biomed. Health Inform., Vol. 18, No. 4, 1196-1206, Jul. 2014.
doi:10.1109/TBCAS.2015.2412548 Google Scholar
12. Swaminathan, M., F. S. Cabrera, J. S. Pujol, U. Muncuk, G. Schirner, and K. R. Chowdhury, "Multi-path model and sensitivity analysis for galvanic coupled intra-body communication through layered tissue," IEEE Transactions on Biomedical Circuits and Systems, Vol. 10, No. 2, 339-351, Apr. 2016.
doi:10.1109/TBME.2012.2205382 Google Scholar
13. Callejon, M. A., D. Naranjo-Hernandez, J. Reina-Tosina, and L. M. Roa, "Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 11, 3263-3269, Nov. 2012. Google Scholar
14. Xu, R., H. Zhu, and J. Yuan, "Circuit-coupled FEM analysis of the electric field type intra-body communication channel," Proc. IEEE Biomed. Circuits Syst. Conf., 221-224, Nov. 2009. Google Scholar
15. Gao, Y. M., Z. M. Wu, S. H. Pun, et al. "A novel field-circuit FEM modeling and channel gain estimation for galvanic coupling real IBC measurements," Sensors (Basel), Vol. 16, No. 4, Apr. 2, 2016.
doi:10.1088/0031-9155/41/11/003 Google Scholar
16. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, 1996. Google Scholar
17. Gao, Y. M., "Investigation of electromagnetic model and empirical analysis for galvanic coupling intra-body communication,", Ph.D. Thesis of Fuzhou University, 103–105, 2010.
doi:10.1109/TMTT.2007.895640 Google Scholar
18. Cho, N., J. Yoo, S.-J. Song, et al. "The human body characteristics as a signal transmission medium for intrabody communication," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 5, 1080-1086, 2007. Google Scholar
19. Chen, Z. Y., Y. M. Gao, and M. Du, "Multilayer distributed circuit modeling for galvanic coupling intrabody communication," Journal of Sensors, Vol. 2018, 8096064, 2018. Google Scholar