Vol. 106
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-10-28
A Tri-Band Impedance Transformer Based Output Network for Efficient RF Power Amplifiers
By
Progress In Electromagnetics Research C, Vol. 106, 177-186, 2020
Abstract
Design of a harmonically tuned RF Power Amplifier (PA) with enhanced efficiency and gain is presented in this letter. It makes use of a tri-band impedance transformer as a two-port output network for facilitating concurrent optimum fundamental and harmonic impedances at the drain terminal. The design is augmented by analytical formulations and analysis to identify the optimal impedance matching scenario at the fundamental, second harmonic, and third harmonic. A thorough analysis reveals that the proposed PA design scheme is very simple while maintaining the performance obtained from the load-pull. A prototype operating at a frequency of 3.5 GHz is developed on RO5880 using 10W GaN HEMT. An excellent agreement between the measured and the EM simulated results validates the proposed design technique.
Citation
Antra Saxena, and Mohammad S. Hashmi, "A Tri-Band Impedance Transformer Based Output Network for Efficient RF Power Amplifiers," Progress In Electromagnetics Research C, Vol. 106, 177-186, 2020.
doi:10.2528/PIERC20072902
References

1. Grebennikov, A. and N. O. Sokal, Switchmode RF Power Amplifiers, 2007.

2. Kim, J. H., G. D. Jo, J. F. Oh, Y. H. Kim, K. C. Lee, and J. H. Jung, "Modeling and design methodology of high-efficiency class-F and class-F−1 power amplifiers," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 1, 153-165, 2011.
doi:10.1109/TMTT.2010.2090167        Google Scholar

3. Tanany, A. A., A. Sayed, and G. Boeck, "Analysis of broadband GaN switch mode class-E power amplifier," Progress In Electromagnetics Research Letters, Vol. 38, 151-160, 2013.
doi:10.2528/PIERL13012005        Google Scholar

4. Raab, F. H., "Maximum efficiency and output of class-F power amplifiers," IEEE Trans. Microw. Theory Techn., Vol. 49, No. 6, 1162-1166, 2001.
doi:10.1109/22.925511        Google Scholar

5. Xu, Y., J. Wang, and X. Zhu, "Analysis and implementation of inverse class-F power amplifier for 3.5 GHz transmitters," Proc. Asia-Pacific Microw. Conf., 410-413, 2010.        Google Scholar

6. Lee, Y. S. and Y. H. Jeong, "A high-efficiency class-E GaN HEMT power amplifier for WCDMA applications," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 622-624, 2007.
doi:10.1109/LMWC.2007.901803        Google Scholar

7. Gao, S., P. Butterworth, S. Ooi, and A. Sambell, "High-efficiency power amplifier design including input harmonic termination," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2, 81-83, 2006.
doi:10.1109/LMWC.2005.863171        Google Scholar

8. Liu, G., S. Li, Z. Cheng, H. Feng, and Z. Dong, "High efficiency broadband GaN HEMT power amplifier based on harmonic tuned matching approach," International Journal of RF and Microwave Computer Aided Engineering, Vol. 30, No. 2, e22097, 2020.        Google Scholar

9. Dani, A., M. Roberg, and Z. Popovic, "PA efficiency and linearity enhancement using external harmonic injection," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 12, 4097-4106, 2012.
doi:10.1109/TMTT.2012.2222918        Google Scholar

10. Jee, S., J. Moon, J. Kim, J. Son, and B. Kim, "Switching behavior of class-E power amplifier and its operation above maximum frequency," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 1, 89-98, Dec. 2011.
doi:10.1109/TMTT.2011.2173208        Google Scholar

11. Lee, Y. S., M. W. Lee, and Y. H. Jeong, "High-efficiency class-F GaN HEMT amplifier with simple parasitic-compensation circuit," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, 55-57, 2008.
doi:10.1109/LMWC.2007.912023        Google Scholar

12. Banerjee, D., A. Saxena, and M. Hashmi, "A novel independent harmonic tuned two port output network for efficiency enhanced RF power amplifiers," Microwave and Optical Technology Letters, 2020, doi: 10.1002/mop.32615.        Google Scholar

13. Kamiyama, M., I. Ryo, and H. Kazuhiko, "5.65 GHz high-efficiency GaN HEMT power amplifier with harmonics treatment up to fourth order," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 315-317, 2012.
doi:10.1109/LMWC.2012.2197385        Google Scholar

14. Saad, P., H. M. Nemati, K. Andersson, and C. Fager, "Highly efficient GaN-HEMT power amplifiers at 3.5 GHz and 5.5 GHz," Proc. IEEE WAMICON Conf., 1-4, 2011.        Google Scholar

15. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "A design technique for concurrent dualband harmonic tuned power amplifier," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 11, 2545-2555, 2008.
doi:10.1109/TMTT.2008.2004897        Google Scholar

16. El Maazouzi, L., P. Colantonio, A. Mediavilla, and F. Giannini, "A 3.5 GHz 2nd harmonic tuned PA design,” IEEE European Microw. Conf. (EuMC),", 1090-1093, 2009.        Google Scholar

17. Saad, P., C. Fager, H. M. Nemati, H. Cao, H. Zirath, and K. Andersson, "A highly efficient 3.5 GHz inverse class-F GaN HEMT power amplifier," Inter. Journal of Micro. Wireless Techno., Vol. 2, No. 3-4, 317-324, 2010.
doi:10.1017/S1759078710000395        Google Scholar

18. Ghannouchi, F. M. and M. S. Hashmi, Load-pull Techniques with Applications to Power Amplifier Design, Springer Series in Advanced Microelectronics, 2013.
doi:10.1007/978-94-007-4461-5

19. Lin, F., C. X. Qing, and L. Zhe, "A novel tri-band branch-line coupler with three controllable operating frequencies," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 12, 666-668, 2010.
doi:10.1109/LMWC.2010.2074191        Google Scholar

20. Piazzon, L., P. Saad, P. Colantonio, F. Giannini, K. Andersson, and C. Fager, "Branch-line coupler design operating in four arbitrary frequencies," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 67-69, 2012.
doi:10.1109/LMWC.2011.2181349        Google Scholar

21. Banerjee, D., A. Saxena, and M. S. Hashmi, "A novel concept of virtual impedance for high frequency tri-band impedance matching networks," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 65, No. 9, 1184-1188, 2018.
doi:10.1109/TCSII.2018.2797129        Google Scholar

22. Tang, X. and K. Mouthaan, "Compact dual-band power divider with single all pass coupled lines sections," IET Elect. Lett., Vol. 46, No. 10, 688-689, 2010.
doi:10.1049/el.2010.3579        Google Scholar

23. Maktoomi, M. A., V. Panwar, M. S. Hashmi, and F. M. Ghannouchi, "A dual-band matching network for frequency-dependent complex loads suitable for dual-band RF amplifiers," IEEE Inter. Microw. RF Conf. (IMaRC), 88-91, 2014.
doi:10.1109/IMaRC.2014.7038977        Google Scholar

24. Lee, M. W., Y. S. Lee, and Y. H. Jeong, "A high-efficiency GaN HEMT hybrid class-E power amplifier for 3.5 GHz WiMAX applications," IEEE European Microw. Conf. (EuMC), 436-439, 2008.        Google Scholar