1. Grebennikov, A. and N. O. Sokal, Switchmode RF Power Amplifiers, 2007.
2. Kim, J. H., G. D. Jo, J. F. Oh, Y. H. Kim, K. C. Lee, and J. H. Jung, "Modeling and design methodology of high-efficiency class-F and class-F−1 power amplifiers," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 1, 153-165, 2011.
doi:10.1109/TMTT.2010.2090167 Google Scholar
3. Tanany, A. A., A. Sayed, and G. Boeck, "Analysis of broadband GaN switch mode class-E power amplifier," Progress In Electromagnetics Research Letters, Vol. 38, 151-160, 2013.
doi:10.2528/PIERL13012005 Google Scholar
4. Raab, F. H., "Maximum efficiency and output of class-F power amplifiers," IEEE Trans. Microw. Theory Techn., Vol. 49, No. 6, 1162-1166, 2001.
doi:10.1109/22.925511 Google Scholar
5. Xu, Y., J. Wang, and X. Zhu, "Analysis and implementation of inverse class-F power amplifier for 3.5 GHz transmitters," Proc. Asia-Pacific Microw. Conf., 410-413, 2010. Google Scholar
6. Lee, Y. S. and Y. H. Jeong, "A high-efficiency class-E GaN HEMT power amplifier for WCDMA applications," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 622-624, 2007.
doi:10.1109/LMWC.2007.901803 Google Scholar
7. Gao, S., P. Butterworth, S. Ooi, and A. Sambell, "High-efficiency power amplifier design including input harmonic termination," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2, 81-83, 2006.
doi:10.1109/LMWC.2005.863171 Google Scholar
8. Liu, G., S. Li, Z. Cheng, H. Feng, and Z. Dong, "High efficiency broadband GaN HEMT power amplifier based on harmonic tuned matching approach," International Journal of RF and Microwave Computer Aided Engineering, Vol. 30, No. 2, e22097, 2020. Google Scholar
9. Dani, A., M. Roberg, and Z. Popovic, "PA efficiency and linearity enhancement using external harmonic injection," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 12, 4097-4106, 2012.
doi:10.1109/TMTT.2012.2222918 Google Scholar
10. Jee, S., J. Moon, J. Kim, J. Son, and B. Kim, "Switching behavior of class-E power amplifier and its operation above maximum frequency," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 1, 89-98, Dec. 2011.
doi:10.1109/TMTT.2011.2173208 Google Scholar
11. Lee, Y. S., M. W. Lee, and Y. H. Jeong, "High-efficiency class-F GaN HEMT amplifier with simple parasitic-compensation circuit," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, 55-57, 2008.
doi:10.1109/LMWC.2007.912023 Google Scholar
12. Banerjee, D., A. Saxena, and M. Hashmi, "A novel independent harmonic tuned two port output network for efficiency enhanced RF power amplifiers," Microwave and Optical Technology Letters, 2020, doi: 10.1002/mop.32615. Google Scholar
13. Kamiyama, M., I. Ryo, and H. Kazuhiko, "5.65 GHz high-efficiency GaN HEMT power amplifier with harmonics treatment up to fourth order," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 315-317, 2012.
doi:10.1109/LMWC.2012.2197385 Google Scholar
14. Saad, P., H. M. Nemati, K. Andersson, and C. Fager, "Highly efficient GaN-HEMT power amplifiers at 3.5 GHz and 5.5 GHz," Proc. IEEE WAMICON Conf., 1-4, 2011. Google Scholar
15. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "A design technique for concurrent dualband harmonic tuned power amplifier," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 11, 2545-2555, 2008.
doi:10.1109/TMTT.2008.2004897 Google Scholar
16. El Maazouzi, L., P. Colantonio, A. Mediavilla, and F. Giannini, "A 3.5 GHz 2nd harmonic tuned PA design,” IEEE European Microw. Conf. (EuMC),", 1090-1093, 2009. Google Scholar
17. Saad, P., C. Fager, H. M. Nemati, H. Cao, H. Zirath, and K. Andersson, "A highly efficient 3.5 GHz inverse class-F GaN HEMT power amplifier," Inter. Journal of Micro. Wireless Techno., Vol. 2, No. 3-4, 317-324, 2010.
doi:10.1017/S1759078710000395 Google Scholar
18. Ghannouchi, F. M. and M. S. Hashmi, Load-pull Techniques with Applications to Power Amplifier Design, Springer Series in Advanced Microelectronics, 2013.
doi:10.1007/978-94-007-4461-5
19. Lin, F., C. X. Qing, and L. Zhe, "A novel tri-band branch-line coupler with three controllable operating frequencies," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 12, 666-668, 2010.
doi:10.1109/LMWC.2010.2074191 Google Scholar
20. Piazzon, L., P. Saad, P. Colantonio, F. Giannini, K. Andersson, and C. Fager, "Branch-line coupler design operating in four arbitrary frequencies," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 67-69, 2012.
doi:10.1109/LMWC.2011.2181349 Google Scholar
21. Banerjee, D., A. Saxena, and M. S. Hashmi, "A novel concept of virtual impedance for high frequency tri-band impedance matching networks," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 65, No. 9, 1184-1188, 2018.
doi:10.1109/TCSII.2018.2797129 Google Scholar
22. Tang, X. and K. Mouthaan, "Compact dual-band power divider with single all pass coupled lines sections," IET Elect. Lett., Vol. 46, No. 10, 688-689, 2010.
doi:10.1049/el.2010.3579 Google Scholar
23. Maktoomi, M. A., V. Panwar, M. S. Hashmi, and F. M. Ghannouchi, "A dual-band matching network for frequency-dependent complex loads suitable for dual-band RF amplifiers," IEEE Inter. Microw. RF Conf. (IMaRC), 88-91, 2014.
doi:10.1109/IMaRC.2014.7038977 Google Scholar
24. Lee, M. W., Y. S. Lee, and Y. H. Jeong, "A high-efficiency GaN HEMT hybrid class-E power amplifier for 3.5 GHz WiMAX applications," IEEE European Microw. Conf. (EuMC), 436-439, 2008. Google Scholar