Vol. 99
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-10
Bandpass Frequency Selective Surface Based on Square Waveguide Structure Using 3D Printing Technology
By
Progress In Electromagnetics Research M, Vol. 99, 165-175, 2021
Abstract
In this paper, a novel three-dimensional (3D) bandpass frequency selective surface (FSS) is presented based on a square waveguide structure using 3D printing technology. The proposed 3D FSS is composed of a periodic array of the square waveguides with dumbbell slots embedded in waveguide walls. The square waveguide of the unit cell provides a propagation path, which can excite two resonant modes, leading to a bandpass response with one transmission pole and one transmission zero below the cutoff frequency of the square waveguide. To explain the operating principle of the proposed 3D FSS, the electric field distributions at the frequencies of transmission pole/zero are analyzed, and an equivalent circuit model is also established. For validation, a practical example is manufactured simply and rapidly, by using 3D printing technology. To verify the performance of the proposed 3D FSS, the frequency selective characteristics of the implemented 3D FSS for both TE and TM polarizations under different incident angles are measured. The measurement results show that the proposed structure exhibits dual polarizations and provides good frequency stability under incident angles from 0° to 40°.
Citation
Zhengyong Yu, and Cheng Wang, "Bandpass Frequency Selective Surface Based on Square Waveguide Structure Using 3D Printing Technology," Progress In Electromagnetics Research M, Vol. 99, 165-175, 2021.
doi:10.2528/PIERM20080803
References

1. Munk, B. A., Frequency Selective Surface: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770

2. Chen, H., X. Hou, and L. Deng, "Design of frequency selective surfaces radome for a planar slotted waveguide antenna," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1231-1233, 2009.
doi:10.1109/LAWP.2009.2035646

3. Song, X., Z. Yan, T. Zhang, C. Yang, and R. Lian, "Triband frequency selective surface as subreflector in Ku-, K-, and Ka-bands," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1869-1872, 2016.
doi:10.1109/LAWP.2016.2542185

4. Sivasamy, R., M. Kanagasabai, S. Baisakhiya, R. Natarajan, J. K. Pakkathillam, and S. K. Palaniswamy, "A novel shield for GSM 1800 MHz band using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 38, 193-199, 2013.
doi:10.2528/PIERL13022206

5. Zhang, K. Z., W. Jiang, J. Y. Ren, and S. X. Gong, "An annular-ring miniaturized stopband frequency selective surface with ultra-large angle of incidence," Progress In Electromagnetics Research M, Vol. 65, 19-27, 2018.
doi:10.2528/PIERM18011014

6. Wu, R., H. Zhang, Z. M. Yang, T. Zhong, and Y. F. Lin, "Compact stable frequency selective surface using novel Y-type element," Progress In Electromagnetics Research Letters, Vol. 57, 85-90, 2015.
doi:10.2528/PIERL15050705

7. Shaik, V. and K. Shambavi, "Design of dodecagon unit cell shape based three layered frequency selective surfaces for X band reflection," Progress In Electromagnetics Research M, Vol. 75, 103-111, 2018.
doi:10.2528/PIERM18070207

8. Xue, J. Y., S. X. Gong, P. F. Zhang, W. Wang, and F. F. Zhang, "A new miniaturized fractal frequency selective surface with excellent angular stability," Progress In Electromagnetics Research Letters, Vol. 13, 131-138, 2010.
doi:10.2528/PIERL10010804

9. Wang, H., M. Yan, S. Qu, L. Zheng, and J. Wang, "Design of a self-complementary frequency selective surface with multi-band polarization separation characteristic," IEEE Access, Vol. 7, 36788-36799, 2019.
doi:10.1109/ACCESS.2019.2905416

10. Rashid, A. K. and Z. Shen, "A novel band-reject frequency selective surface with pseudo-elliptic response," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1220-1226, 2010.
doi:10.1109/TAP.2010.2041167

11. Li, B. and Z. Shen, "Three-dimensional bandpass frequency-selective structures with multiple transmission zeros," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 10, 3578-3589, 2013.
doi:10.1109/TMTT.2013.2279776

12. Li, B. and Z. Shen, "Dual-band bandpass frequency-selective structures with arbitrary band ratios," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5504-5512, 2014.
doi:10.1109/TAP.2014.2349526

13. Al-Sheikh, A. and Z. Shen, "Design of wideband bandstop frequency selective structures using stacked parallel strip line arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3401-3409, 2016.
doi:10.1109/TAP.2016.2570247

14. Tao, K., B. Li, Y. Tang, M. Zhang, and Y. Bo, "Analysis and implementation of 3D bandpass frequency selective structure with high frequency selectivity," Electron. Lett., Vol. 53, No. 22, 324-326, 2017.
doi:10.1049/el.2016.4469

15. Omar, A. A. and Z. Shen, "Double-sided parallel-strip line resonator for dual-polarized 3-D frequency-selective structure and absorber," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 10, 3744-3752, 2017.
doi:10.1109/TMTT.2017.2700301

16. Omar, A. A. and Z. Shen, "Thin bandstop frequency-selective structures based on loop resonator," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 7, 2298-2309, 2017.
doi:10.1109/TMTT.2017.2651812

17. Li, B., X. Huang, L. Zhu, Y. X. Zhang, Y. M. Tang, W. J. Lu, and Y. M. Bo, "Bandpass frequency selective structure with improved out-of-band rejection using stacked single-layer slotlines," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6003-6014, 2018.
doi:10.1109/TAP.2018.2866529

18. Rashid, A. K., Z. Shen, and B. Li, "An elliptical bandpass frequency selective structure based on microstrip lines," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4661-4669, 2012.
doi:10.1109/TAP.2012.2207355

19. Pelletti, C., G. Bianconi, R. Mittra, and Z. Shen, "Frequency selective surface with wideband quasi-elliptic bandpass response," Electron. Lett., Vol. 49, No. 17, 1052-1053, 2013.
doi:10.1049/el.2013.2007

20. Ferreira, D., I. Cuiñas, R. F. S. Caldeirinha, and T. R. Fernandes, "3-D mechanically tunable square slot FSS," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 242-250, 2017.
doi:10.1109/TAP.2016.2631131

21. Zhang, B. and H. Zirath, "Metallic 3-D printed rectangular waveguides for millimeter-wave applications," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 6, No. 5, 796-804, 2016.
doi:10.1109/TCPMT.2016.2550483

22. Nayeri, P., et al. "3D printed dielectric reflectarrays: Low-cost high-gain antennas at sub-millimeter waves," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2000-2008, 2014.
doi:10.1109/TAP.2014.2303195

23. Wu, T. K., Ed., Frequency Selective Surface and Grid Array, Wiley, 1995.

24. Craven, G. F. and C. K. Mok, "The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 3, 295-308, 1971.
doi:10.1109/TMTT.1971.1127503

25. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156

26. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567

27. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence," IEE Proc. H - Microw., Antennas Propag., Vol. 132, No. 6, 395-399, 1985.
doi:10.1049/ip-h-2.1985.0070

28. Pozar, D. M., Microwave Engineering, Wiley, 2009.