1. Munk, B. A., Frequency Selective Surface: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770
2. Chen, H., X. Hou, and L. Deng, "Design of frequency selective surfaces radome for a planar slotted waveguide antenna," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1231-1233, 2009.
doi:10.1109/LAWP.2009.2035646 Google Scholar
3. Song, X., Z. Yan, T. Zhang, C. Yang, and R. Lian, "Triband frequency selective surface as subreflector in Ku-, K-, and Ka-bands," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1869-1872, 2016.
doi:10.1109/LAWP.2016.2542185 Google Scholar
4. Sivasamy, R., M. Kanagasabai, S. Baisakhiya, R. Natarajan, J. K. Pakkathillam, and S. K. Palaniswamy, "A novel shield for GSM 1800 MHz band using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 38, 193-199, 2013.
doi:10.2528/PIERL13022206 Google Scholar
5. Zhang, K. Z., W. Jiang, J. Y. Ren, and S. X. Gong, "An annular-ring miniaturized stopband frequency selective surface with ultra-large angle of incidence," Progress In Electromagnetics Research M, Vol. 65, 19-27, 2018.
doi:10.2528/PIERM18011014 Google Scholar
6. Wu, R., H. Zhang, Z. M. Yang, T. Zhong, and Y. F. Lin, "Compact stable frequency selective surface using novel Y-type element," Progress In Electromagnetics Research Letters, Vol. 57, 85-90, 2015.
doi:10.2528/PIERL15050705 Google Scholar
7. Shaik, V. and K. Shambavi, "Design of dodecagon unit cell shape based three layered frequency selective surfaces for X band reflection," Progress In Electromagnetics Research M, Vol. 75, 103-111, 2018.
doi:10.2528/PIERM18070207 Google Scholar
8. Xue, J. Y., S. X. Gong, P. F. Zhang, W. Wang, and F. F. Zhang, "A new miniaturized fractal frequency selective surface with excellent angular stability," Progress In Electromagnetics Research Letters, Vol. 13, 131-138, 2010.
doi:10.2528/PIERL10010804 Google Scholar
9. Wang, H., M. Yan, S. Qu, L. Zheng, and J. Wang, "Design of a self-complementary frequency selective surface with multi-band polarization separation characteristic," IEEE Access, Vol. 7, 36788-36799, 2019.
doi:10.1109/ACCESS.2019.2905416 Google Scholar
10. Rashid, A. K. and Z. Shen, "A novel band-reject frequency selective surface with pseudo-elliptic response," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1220-1226, 2010.
doi:10.1109/TAP.2010.2041167 Google Scholar
11. Li, B. and Z. Shen, "Three-dimensional bandpass frequency-selective structures with multiple transmission zeros," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 10, 3578-3589, 2013.
doi:10.1109/TMTT.2013.2279776 Google Scholar
12. Li, B. and Z. Shen, "Dual-band bandpass frequency-selective structures with arbitrary band ratios," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5504-5512, 2014.
doi:10.1109/TAP.2014.2349526 Google Scholar
13. Al-Sheikh, A. and Z. Shen, "Design of wideband bandstop frequency selective structures using stacked parallel strip line arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3401-3409, 2016.
doi:10.1109/TAP.2016.2570247 Google Scholar
14. Tao, K., B. Li, Y. Tang, M. Zhang, and Y. Bo, "Analysis and implementation of 3D bandpass frequency selective structure with high frequency selectivity," Electron. Lett., Vol. 53, No. 22, 324-326, 2017.
doi:10.1049/el.2016.4469 Google Scholar
15. Omar, A. A. and Z. Shen, "Double-sided parallel-strip line resonator for dual-polarized 3-D frequency-selective structure and absorber," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 10, 3744-3752, 2017.
doi:10.1109/TMTT.2017.2700301 Google Scholar
16. Omar, A. A. and Z. Shen, "Thin bandstop frequency-selective structures based on loop resonator," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 7, 2298-2309, 2017.
doi:10.1109/TMTT.2017.2651812 Google Scholar
17. Li, B., X. Huang, L. Zhu, Y. X. Zhang, Y. M. Tang, W. J. Lu, and Y. M. Bo, "Bandpass frequency selective structure with improved out-of-band rejection using stacked single-layer slotlines," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6003-6014, 2018.
doi:10.1109/TAP.2018.2866529 Google Scholar
18. Rashid, A. K., Z. Shen, and B. Li, "An elliptical bandpass frequency selective structure based on microstrip lines," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4661-4669, 2012.
doi:10.1109/TAP.2012.2207355 Google Scholar
19. Pelletti, C., G. Bianconi, R. Mittra, and Z. Shen, "Frequency selective surface with wideband quasi-elliptic bandpass response," Electron. Lett., Vol. 49, No. 17, 1052-1053, 2013.
doi:10.1049/el.2013.2007 Google Scholar
20. Ferreira, D., I. Cuiñas, R. F. S. Caldeirinha, and T. R. Fernandes, "3-D mechanically tunable square slot FSS," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 242-250, 2017.
doi:10.1109/TAP.2016.2631131 Google Scholar
21. Zhang, B. and H. Zirath, "Metallic 3-D printed rectangular waveguides for millimeter-wave applications," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 6, No. 5, 796-804, 2016.
doi:10.1109/TCPMT.2016.2550483 Google Scholar
22. Nayeri, P., et al. "3D printed dielectric reflectarrays: Low-cost high-gain antennas at sub-millimeter waves," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2000-2008, 2014.
doi:10.1109/TAP.2014.2303195 Google Scholar
23. Wu, T. K., Ed., Frequency Selective Surface and Grid Array, Wiley, 1995.
24. Craven, G. F. and C. K. Mok, "The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 3, 295-308, 1971.
doi:10.1109/TMTT.1971.1127503 Google Scholar
25. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156 Google Scholar
26. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567 Google Scholar
27. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence," IEE Proc. H - Microw., Antennas Propag., Vol. 132, No. 6, 395-399, 1985.
doi:10.1049/ip-h-2.1985.0070 Google Scholar
28. Pozar, D. M., Microwave Engineering, Wiley, 2009.