1. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetic Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205 Google Scholar
2. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetic Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305 Google Scholar
3. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), 10-12, 2018. Google Scholar
4. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, S. L. Smith, and B. A. Zeb, "Single-dielectric wideband partially reflecting surface with variable high-gain resonant cavity antenna," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1916-1921, 2019.
doi:10.1109/TAP.2019.2891232 Google Scholar
5. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. S. Member, "Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3328-3335, 2020.
doi:10.1109/TAP.2020.2969888 Google Scholar
6. Dubost, G., "Influence of surface wave upon efficiency and mutual coupling between rectangular microstrip antennas," International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’s, Dallas, TX, USA, 660–663, 1990. Google Scholar
7. Pozar, D. M. and P. R. Haddad, "Anomalous mutual coupling between microstrip antennas," IEEE Trans. Antennas Propag., Vol. 42, No. 11, 1545-1549, 1994.
doi:10.1109/8.362782 Google Scholar
8. Djordjevic, A. R. and M. M. Nikolic, "Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3469-3476, 2005.
doi:10.1109/TAP.2005.858847 Google Scholar
9. Hou, D., S. X. B. Wang, L. J. J. Wang, and W. Hong, "Elimination of scan blindness with compact defected ground structures in microstrip phased array," IET Microwaves, Antennas Propag., Vol. 3, No. 2, 269-275, 2009.
doi:10.1049/iet-map:20080037 Google Scholar
10. Tang, S. X. M. and Y. B. S. Gao, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microwaves, Antennas Propag., Vol. 5, No. 12, 1488-1494, 2011.
doi:10.1049/iet-map.2010.0154 Google Scholar
11. Yang, F. and Y. Rahmat-samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) Structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983 Google Scholar
12. Rajo-iglesias, E., O. Quevedo-teruel, and L. Inclan-sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1648-1655, 2008.
doi:10.1109/TAP.2008.923306 Google Scholar
13. Beiranvand, E., M. Afsahy, and V. Sharbati, "Reduction of the mutual coupling in patch antenna arrays based on EBG by using a planar frequency-selective surface structure," Int. J. Microw. Wirel. Technol., Vol. 9, No. 2, 349-355, 2015.
doi:10.1017/S1759078715001440 Google Scholar
14. Qiu, L., F. Zhao, K. Xiao, S. Chai, and J. Mao, "Transmit-Receive isolation improvement of antenna arrays by using EBG structures," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 93-96, 2012. Google Scholar
15. Sahandabadi, S. and S. V. A.-D. Makki, "Mutual coupling reduction using complementary of SRR with wire MNG structure," Microw. Opt. Technol. Lett., Vol. 61, No. 5, 1231-1234, 2019.
doi:10.1002/mop.31717 Google Scholar
16. Mohamadzade, B., A. Lalbakhsh, R. B. V. B. Simorangkir, A. Rezaee, and R. M. Hashmi, "Mutual coupling reduction in microstrip array antenna by employing cut side patches and EBG structures," Progress In Electromagnetic Research, Vol. 89, 179-187, 2020.
doi:10.2528/PIERM19100703 Google Scholar
17. Farsi, S., et al., "Mutual coupling reduction between planar antennas by using a simple microstrip U-section," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1501-1503, 2012.
doi:10.1109/LAWP.2012.2232274 Google Scholar
18. Ali, A., L. Neyestanak, F. Jolani, and M. Dadgarpour, "Mutual coupling reduction between two microstrip patch antennas," 2008 Canadian Conference on Electrical and Computer Engineering, Niagara Falls, 739-742, 2008. Google Scholar
19. Qi, H., L. Liu, X. Yin, H. Zhao, and W. J. Kulesza, "Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 191-194, 2016.
doi:10.1109/LAWP.2015.2437995 Google Scholar
20. Arand, B. A., A. Bazrkar, and A. Zahedi, "Design of a phased array in triangular grid with an efficient matching network and reduced mutual coupling for wide-angle scanning," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 2983-2991, 2017.
doi:10.1109/TAP.2017.2690903 Google Scholar
21. Kiani, M. and H. R. Hassani, "Wide scan phased array patch antenna with mutual coupling reduction," IET Microwaves, Antennas Propag., Vol. 12, No. 12, 1932-1938, 2018.
doi:10.1049/iet-map.2018.0155 Google Scholar
22. Tang, J., et al., "A metasurface superstrate for mutual coupling reduction of large antenna arrays," IEEE Access, Vol. 8, 126859-126867, 2020.
doi:10.1109/ACCESS.2020.3008162 Google Scholar
23. Zhang, X. and L. Zhu, "Gain-enhanced patch antennas with loading of shorting pins," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3310-3318, 2016.
doi:10.1109/TAP.2016.2573860 Google Scholar
24. Samanta, S., P. S. Reddy, and K. Mandal, "Cross-polarization suppression in probe-fed circular patch antenna using two circular clusters of shorting pins," IEEE Trans. Antennas Propag., Vol. 66, No. 6, 3177-3182, 2018.
doi:10.1109/TAP.2018.2819895 Google Scholar
25. Sanad, H., "Effect of the shorting posts on short circuit microstrip antennas," Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science, No. 2, 794-797, 1994.
doi:10.1109/APS.1994.407972 Google Scholar
26. Targonski, S. D. and R. B. Waterhouse, "Performance of microstrip patches incorporating a single shorting post," IEEE Antennas Propag. Soc. Int. Symp., No. 1, 29-32, 1996. Google Scholar
27. Kishk, A. A., L. Shafai, and A. Ittipiboon, "Single-element rectangular microstrip antenna for dual frequency operation," Electron. Lett., Vol. 19, No. 8, 298-300, 1983.
doi:10.1049/el:19830207 Google Scholar
28. Shuley, N. V. and R. B. Waterhouse, "Dual frequency microstrip rectangular patches," Electron. Lett., Vol. 28, No. 7, 606-607, 1992.
doi:10.1049/el:19920382 Google Scholar
29. Guha, D., S. Member, and Y. M. M. Antar, "Circular microstrip patch loaded with balanced shorting pins for improved bandwidth," IEEE Antennas Wirel. Propag. Lett., Vol. 5, 217-219, 2006.
doi:10.1109/LAWP.2006.875280 Google Scholar
30. Abdullah, M., Q. Li, W. Xue, G. Peng, and Y. He, "Isolation enhancement of MIMO antennas using shorting pins," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 10, 1-15, 2019.
doi:10.1080/09205071.2019.1606738 Google Scholar
31. Li, W., P. Li, and J. Zhou, "Control of higher order harmonics and spurious modes for microstrip patch antennas," IEEE Access, Vol. 6, 34158-34165, 2018.
doi:10.1109/ACCESS.2018.2850858 Google Scholar