1. Wang, Q. H., W. Q. Che, M. Dionigi, and F. Mastri, "Gains maximization via impedance matching networks for wireless power transfer," Progress In Electromagnetics Research, Vol. 164, 135-153, 2019.
doi:10.2528/PIER18102402 Google Scholar
2. Kalwar, K. A., M. Aamir, and S. Mekhilef, "A design method for developing a high misalignment tolerant wireless charging system for electric vehicles," Meas., Vol. 118, 237-245, 2018.
doi:10.1016/j.measurement.2017.12.013 Google Scholar
3. Sahany, S., S. Biawal, D. P. Kar, P. K. Sahoo, and S. Bhuyan, "Impact of functioning parameters on the wireless power transfer system used for electric vehicle charging," Progress In Electromagnetics Research M, Vol. 79, 187-197, 2019.
doi:10.2528/PIERM18092610 Google Scholar
4. Basar, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy," Sensors and Actuators A Phys., Vol. 249, 207-216, 2017.
doi:10.1016/j.sna.2016.08.035 Google Scholar
5. Liu, H., Q. Shao, and X. L. Fang, "Modeling and optimization of class-E amplifier at subnominal condition in a wireless power transfer system for biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 1, 35-43, 2017.
doi:10.1109/TBCAS.2016.2538320 Google Scholar
6. Jia, Y. Y., S. A. Mirbozorgi, P. C. Zhang, O. T. Inan, W. Li, and M. Ghovanloo, "A dualband wireless power transmission system for evaluating mm-sized implants," IEEE Trans. Biomed. Circuits Syst., Vol. 13, 307-595, 2017. Google Scholar
7. Portol, R. W., V. J. Brusamarello, I. Muller, F. L. C. Riano, and F. R. de Sousa, "Wireless power transfer for contactless instrumentation and measurement," IEEE Instrum. Meas. Mag., Vol. 20, No. 4, 49-54, 2017.
doi:10.1109/MIM.2017.8006394 Google Scholar
8. Ho, S. L., J. Wang, W. N. Fu, and M. Sun, "A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging," IEEE Trans. Magn., Vol. 47, No. 5, 1522-1525, 2011.
doi:10.1109/TMAG.2010.2091495 Google Scholar
9. Shi, Y. Y., J. Liang, M. Wang, and Z. Zhang, "Efficient magnetic resonant coupling wireless power transfer with a novel conical-helix resonator," IEICE Electron. Express, Vol. 14, No. 13, 1-6, 2017.
doi:10.1587/elex.14.20170440 Google Scholar
10. Samanta, S. and A. K. Rathore, "A new current-fed CLC transmitter and LC receiver topology for inductive wireless power transfer application: Analysis, design, and experimental results," IEEE Trans. Transport. Electrific., Vol. 1, No. 4, 357-368, 2015.
doi:10.1109/TTE.2015.2480536 Google Scholar
11. Kallel, B., O. Kanoun, and H. Trabelsi, "Large air gap misalignment tolerable multi-coil inductive power transfer for wireless sensors," IET Power Electron., Vol. 9, No. 8, 1768-1774, 2016.
doi:10.1049/iet-pel.2015.0800 Google Scholar
12. Jeong, N. S. and C. F. arobolante, "Wireless charging of a metal-body device," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 4, 1077-1086, 2017.
doi:10.1109/TMTT.2017.2673820 Google Scholar
13. Kurs, A., et al., "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254 Google Scholar
14. Shi, Y. Y., Y. M. Zhang, M. H. Shen, Y. Fan, C. Wang, and M. Wang, "Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling," AEU — Int. J. Electron. Commun., Vol. 95, 236-241, 2018.
doi:10.1016/j.aeue.2018.08.033 Google Scholar
15. Wang, M., J. Feng, Y. Y. Shi, and M. H. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 3, 1842-1851, 2019. Google Scholar
16. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 7, 4809-4817, 2016. Google Scholar
17. Narayanamoorthi, R., A. Vimala Juliet, and B. Chokkalingam, "Frequency splitting-based wireless power transfer and simultaneous propulsion generation to multiple micro-robots," IEEE Sensors J., Vol. 18, No. 13, 5566-5575, 2018.
doi:10.1109/JSEN.2018.2838671 Google Scholar
18. Zhang, X. Y., C. D. Xue, and J. K. Lin, "Distance-insensitive wireless power transfer using mixed electric and magnetic coupling for frequency splitting suppression," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 11, 4307-4316, 2017.
doi:10.1109/TMTT.2017.2686858 Google Scholar
19. Wang, M., C. Zhou, Y. Y. Shi, M. H. Shen, and J. Feng, "Development of a novel spindle-shaped coil-based wireless power transfer system for frequency splitting elimination," Int. J. of Circuit Theory Appl., Vol. 48, No. 3, 356-368, 2020.
doi:10.1002/cta.2733 Google Scholar
20. Huang, S. D., Z. Q. Li, and K. Y. Lu, "Frequency splitting suppression method for four-coil wireless power transfer system," IET Power Electron., Vol. 9, No. 15, 2859-2864, 2016.
doi:10.1049/iet-pel.2015.0376 Google Scholar
21. Liu, Z., Z. Z. Chen, J. Y. Li, Y. L. Guo, and B. Xu, "A planar L-shape transmitter for a wireless power transfer system," IEEE Antennas Wireless Propag. Lett., Vol. 16, 960-963, 2017.
doi:10.1109/LAWP.2016.2615112 Google Scholar
22. Tang, X., J. X. Zeng, K. P. Pun, S. P. Mai, and C. Zhang, "Low-cost maximum efficiency tracking method for wireless power transfer systems," IEEE Trans. Power Electron., Vol. 33, No. 6, 5317-5329, 2018.
doi:10.1109/TPEL.2017.2726085 Google Scholar
23. Yeo, T. D., D. S. Kwon, S. T. Khang, and J. W. Yu, "Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank," IEEE Trans. Power Electron., Vol. 32, No. 1, 471-478, 2017.
doi:10.1109/TPEL.2016.2523121 Google Scholar
24. Kim, J., D. H. Kim, and Y. J. Park, "Free-positioning wireless power transfer to multiple devices using a planar transmitting coil and switchable impedance matching networks," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3714-3722, 2016.
doi:10.1109/TMTT.2016.2608802 Google Scholar
25. Huang, Y., N. Shinohara, and T. Mitani, "Impedance matching in wireless power transfer," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 2, 582-590, 2017.
doi:10.1109/TMTT.2016.2618921 Google Scholar
26. Lee, W. S., W. I. Son, K. S. Oh, and J. W. Yu, "Contactless energy transfer systems using antiparallel resonant loops," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 350-359, 2013.
doi:10.1109/TIE.2011.2177611 Google Scholar
27. Kim, J. and J. Jeong, "Range-adaptive wireless power transfer using multiloop and tunable matching techniques," IEEE Trans. Ind. Electron., Vol. 62, No. 10, 6233-6241, 2015.
doi:10.1109/TIE.2015.2420041 Google Scholar
28. Lee, G., B. H. Waters, Y. G. Shin, J. R. Smith, and W. S. Park, "A reconfigurable resonant coil for range adaptation wireless power transfer," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 2, 624-632, 2016.
doi:10.1109/TMTT.2015.2512578 Google Scholar
29. Lee, W. S., W. I. Son, K. S. Oh, and J. W. Yu, "Contactless energy transfer systems using antiparallel resonant loops," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 350-359, 2013.
doi:10.1109/TIE.2011.2177611 Google Scholar
30. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, et al. "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835 Google Scholar
31. Zhang, Y. M., Z. M. Zhao, and K. N. Chen, "Frequency-splitting analysis of four-coil resonant wireless power transfer," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2436-2445, 2014.
doi:10.1109/TIA.2013.2295007 Google Scholar
32. Song, K., G. Yang, Y. Guo, Y. Lan, S. Dong, J. H. Jiang, and C. B. Zhu, "Design of DD coil with high misalignment tolerance and low EMF emissions for wireless electric vehicle charging systems," IEEE Trans. Power Electron., Vol. 35, No. 9, 9034-9045, 2020.
doi:10.1109/TPEL.2020.2971967 Google Scholar
33. Yu, T. C., W. H. Huang, and C. L. Yang, "Design of dual frequency mixed coupling coils of wireless power and data transfer to enhance lateral and angular misalignment tolerance," IEEE J. Electromagn. RF Microw. M. Biol., Vol. 3, No. 3, 216-223, 2019.
doi:10.1109/JERM.2019.2898347 Google Scholar
34. Lee, W. S., S. Park, J. H. Lee, and M. M. Tentzeris, "Longitudinally misalignment-insensitive dualband wireless power and data transfer systems for a position detection of fast-moving vehicles," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5614-5622, 2019.
doi:10.1109/TAP.2019.2916697 Google Scholar
35. Hu, H. and S. V. Georgakopoulos, "Multiband and broadband wireless power transfer systems using the conformal strongly coupled magnetic resonance method," IEEE Trans. Ind. Electron., Vol. 64, No. 5, 3595-3607, 2017.
doi:10.1109/TIE.2016.2569459 Google Scholar
36. Jiang, C. C., C. D. Hu, Y. H. Xie, S. Y. Chen, Q. L. Cui, and Y. L. Xie, "Analysis and experimental study of impedance matching characteristic of RF ion source on neutral beam injector," IEEE Plasma Sci., Vol. 46, No. 7, 2677-2679, 2018.
doi:10.1109/TPS.2017.2778724 Google Scholar