Vol. 106
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-10-31
Analysis and Design of an Efficient Distance Less-Sensitive Wireless Power Transfer System
By
Progress In Electromagnetics Research C, Vol. 106, 199-213, 2020
Abstract
A traditional magnetic resonant coupling wireless power transfer (MRC-WPT) system is highly sensitive to the distance between transmitting and receiving coils. The transfer performance deteriorates at short distance due to magnetic over-coupling and magnetic weak-coupling at long distance which also results in the decrease of power. In order to improve the power transfer ability, this paper presents an MRC-WPT system with a novel design of resonant loops. Unlike the conventional system in which the receiving coil is identical with the transmitting coil, the receiving coil in the proposed system is different from the transmitting coil in terms of distance between turns. Theoretical equivalent models are presented to investigate the impact of the mutual inductance on the transfer efficiency. Based on numerical simulation, it is found that relatively more uniform mutual inductance can be obtained with the proposed resonant loops. With the proposed MRC-WPT system, the results show that the power transfer ability at short and long distances is improved. The average transfer efficiency is enhanced about 10% compared with the conventional system. Furthermore, the sensitivity of the proposed MRC-WPT system to lateral and angular misalignments is studied and compared with the conventional system. An experimental prototype of the proposed MRC-WPT system is designed for validation. The results show that the performance of the proposed MRC-WPT system outperforms the conventional system without adding any complicated control circuits.
Citation
Meng Wang, Li Ren, Weina Liu, Yanyan Shi, and Youtian Niu, "Analysis and Design of an Efficient Distance Less-Sensitive Wireless Power Transfer System," Progress In Electromagnetics Research C, Vol. 106, 199-213, 2020.
doi:10.2528/PIERC20091102
References

1. Wang, Q. H., W. Q. Che, M. Dionigi, and F. Mastri, "Gains maximization via impedance matching networks for wireless power transfer," Progress In Electromagnetics Research, Vol. 164, 135-153, 2019.
doi:10.2528/PIER18102402        Google Scholar

2. Kalwar, K. A., M. Aamir, and S. Mekhilef, "A design method for developing a high misalignment tolerant wireless charging system for electric vehicles," Meas., Vol. 118, 237-245, 2018.
doi:10.1016/j.measurement.2017.12.013        Google Scholar

3. Sahany, S., S. Biawal, D. P. Kar, P. K. Sahoo, and S. Bhuyan, "Impact of functioning parameters on the wireless power transfer system used for electric vehicle charging," Progress In Electromagnetics Research M, Vol. 79, 187-197, 2019.
doi:10.2528/PIERM18092610        Google Scholar

4. Basar, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy," Sensors and Actuators A Phys., Vol. 249, 207-216, 2017.
doi:10.1016/j.sna.2016.08.035        Google Scholar

5. Liu, H., Q. Shao, and X. L. Fang, "Modeling and optimization of class-E amplifier at subnominal condition in a wireless power transfer system for biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 1, 35-43, 2017.
doi:10.1109/TBCAS.2016.2538320        Google Scholar

6. Jia, Y. Y., S. A. Mirbozorgi, P. C. Zhang, O. T. Inan, W. Li, and M. Ghovanloo, "A dualband wireless power transmission system for evaluating mm-sized implants," IEEE Trans. Biomed. Circuits Syst., Vol. 13, 307-595, 2017.        Google Scholar

7. Portol, R. W., V. J. Brusamarello, I. Muller, F. L. C. Riano, and F. R. de Sousa, "Wireless power transfer for contactless instrumentation and measurement," IEEE Instrum. Meas. Mag., Vol. 20, No. 4, 49-54, 2017.
doi:10.1109/MIM.2017.8006394        Google Scholar

8. Ho, S. L., J. Wang, W. N. Fu, and M. Sun, "A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging," IEEE Trans. Magn., Vol. 47, No. 5, 1522-1525, 2011.
doi:10.1109/TMAG.2010.2091495        Google Scholar

9. Shi, Y. Y., J. Liang, M. Wang, and Z. Zhang, "Efficient magnetic resonant coupling wireless power transfer with a novel conical-helix resonator," IEICE Electron. Express, Vol. 14, No. 13, 1-6, 2017.
doi:10.1587/elex.14.20170440        Google Scholar

10. Samanta, S. and A. K. Rathore, "A new current-fed CLC transmitter and LC receiver topology for inductive wireless power transfer application: Analysis, design, and experimental results," IEEE Trans. Transport. Electrific., Vol. 1, No. 4, 357-368, 2015.
doi:10.1109/TTE.2015.2480536        Google Scholar

11. Kallel, B., O. Kanoun, and H. Trabelsi, "Large air gap misalignment tolerable multi-coil inductive power transfer for wireless sensors," IET Power Electron., Vol. 9, No. 8, 1768-1774, 2016.
doi:10.1049/iet-pel.2015.0800        Google Scholar

12. Jeong, N. S. and C. F. arobolante, "Wireless charging of a metal-body device," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 4, 1077-1086, 2017.
doi:10.1109/TMTT.2017.2673820        Google Scholar

13. Kurs, A., et al., "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254        Google Scholar

14. Shi, Y. Y., Y. M. Zhang, M. H. Shen, Y. Fan, C. Wang, and M. Wang, "Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling," AEU — Int. J. Electron. Commun., Vol. 95, 236-241, 2018.
doi:10.1016/j.aeue.2018.08.033        Google Scholar

15. Wang, M., J. Feng, Y. Y. Shi, and M. H. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 3, 1842-1851, 2019.        Google Scholar

16. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 7, 4809-4817, 2016.        Google Scholar

17. Narayanamoorthi, R., A. Vimala Juliet, and B. Chokkalingam, "Frequency splitting-based wireless power transfer and simultaneous propulsion generation to multiple micro-robots," IEEE Sensors J., Vol. 18, No. 13, 5566-5575, 2018.
doi:10.1109/JSEN.2018.2838671        Google Scholar

18. Zhang, X. Y., C. D. Xue, and J. K. Lin, "Distance-insensitive wireless power transfer using mixed electric and magnetic coupling for frequency splitting suppression," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 11, 4307-4316, 2017.
doi:10.1109/TMTT.2017.2686858        Google Scholar

19. Wang, M., C. Zhou, Y. Y. Shi, M. H. Shen, and J. Feng, "Development of a novel spindle-shaped coil-based wireless power transfer system for frequency splitting elimination," Int. J. of Circuit Theory Appl., Vol. 48, No. 3, 356-368, 2020.
doi:10.1002/cta.2733        Google Scholar

20. Huang, S. D., Z. Q. Li, and K. Y. Lu, "Frequency splitting suppression method for four-coil wireless power transfer system," IET Power Electron., Vol. 9, No. 15, 2859-2864, 2016.
doi:10.1049/iet-pel.2015.0376        Google Scholar

21. Liu, Z., Z. Z. Chen, J. Y. Li, Y. L. Guo, and B. Xu, "A planar L-shape transmitter for a wireless power transfer system," IEEE Antennas Wireless Propag. Lett., Vol. 16, 960-963, 2017.
doi:10.1109/LAWP.2016.2615112        Google Scholar

22. Tang, X., J. X. Zeng, K. P. Pun, S. P. Mai, and C. Zhang, "Low-cost maximum efficiency tracking method for wireless power transfer systems," IEEE Trans. Power Electron., Vol. 33, No. 6, 5317-5329, 2018.
doi:10.1109/TPEL.2017.2726085        Google Scholar

23. Yeo, T. D., D. S. Kwon, S. T. Khang, and J. W. Yu, "Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank," IEEE Trans. Power Electron., Vol. 32, No. 1, 471-478, 2017.
doi:10.1109/TPEL.2016.2523121        Google Scholar

24. Kim, J., D. H. Kim, and Y. J. Park, "Free-positioning wireless power transfer to multiple devices using a planar transmitting coil and switchable impedance matching networks," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3714-3722, 2016.
doi:10.1109/TMTT.2016.2608802        Google Scholar

25. Huang, Y., N. Shinohara, and T. Mitani, "Impedance matching in wireless power transfer," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 2, 582-590, 2017.
doi:10.1109/TMTT.2016.2618921        Google Scholar

26. Lee, W. S., W. I. Son, K. S. Oh, and J. W. Yu, "Contactless energy transfer systems using antiparallel resonant loops," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 350-359, 2013.
doi:10.1109/TIE.2011.2177611        Google Scholar

27. Kim, J. and J. Jeong, "Range-adaptive wireless power transfer using multiloop and tunable matching techniques," IEEE Trans. Ind. Electron., Vol. 62, No. 10, 6233-6241, 2015.
doi:10.1109/TIE.2015.2420041        Google Scholar

28. Lee, G., B. H. Waters, Y. G. Shin, J. R. Smith, and W. S. Park, "A reconfigurable resonant coil for range adaptation wireless power transfer," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 2, 624-632, 2016.
doi:10.1109/TMTT.2015.2512578        Google Scholar

29. Lee, W. S., W. I. Son, K. S. Oh, and J. W. Yu, "Contactless energy transfer systems using antiparallel resonant loops," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 350-359, 2013.
doi:10.1109/TIE.2011.2177611        Google Scholar

30. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, et al. "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835        Google Scholar

31. Zhang, Y. M., Z. M. Zhao, and K. N. Chen, "Frequency-splitting analysis of four-coil resonant wireless power transfer," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2436-2445, 2014.
doi:10.1109/TIA.2013.2295007        Google Scholar

32. Song, K., G. Yang, Y. Guo, Y. Lan, S. Dong, J. H. Jiang, and C. B. Zhu, "Design of DD coil with high misalignment tolerance and low EMF emissions for wireless electric vehicle charging systems," IEEE Trans. Power Electron., Vol. 35, No. 9, 9034-9045, 2020.
doi:10.1109/TPEL.2020.2971967        Google Scholar

33. Yu, T. C., W. H. Huang, and C. L. Yang, "Design of dual frequency mixed coupling coils of wireless power and data transfer to enhance lateral and angular misalignment tolerance," IEEE J. Electromagn. RF Microw. M. Biol., Vol. 3, No. 3, 216-223, 2019.
doi:10.1109/JERM.2019.2898347        Google Scholar

34. Lee, W. S., S. Park, J. H. Lee, and M. M. Tentzeris, "Longitudinally misalignment-insensitive dualband wireless power and data transfer systems for a position detection of fast-moving vehicles," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5614-5622, 2019.
doi:10.1109/TAP.2019.2916697        Google Scholar

35. Hu, H. and S. V. Georgakopoulos, "Multiband and broadband wireless power transfer systems using the conformal strongly coupled magnetic resonance method," IEEE Trans. Ind. Electron., Vol. 64, No. 5, 3595-3607, 2017.
doi:10.1109/TIE.2016.2569459        Google Scholar

36. Jiang, C. C., C. D. Hu, Y. H. Xie, S. Y. Chen, Q. L. Cui, and Y. L. Xie, "Analysis and experimental study of impedance matching characteristic of RF ion source on neutral beam injector," IEEE Plasma Sci., Vol. 46, No. 7, 2677-2679, 2018.
doi:10.1109/TPS.2017.2778724        Google Scholar