1. Biswas, A. K. and U. Chakraborty, "Reduced mutual coupling of compact MIMO antenna designed for WLAN and WiMAX applications," Int. J. RF Microw. Comput. Aided Eng., e21629, 2018. Google Scholar
2. Abdullah, M., Q. Li, W. Xue, G. Peng, Y. He, and X. Chen, "Isolation enhancement of MIMO antennas using shorting pins," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 10, 1249-1263, 2019.
doi:10.1080/09205071.2019.1606738 Google Scholar
3. Babu, K. V. and B. Anuradha, "Design of inverted L-shape & ohm symbol inserted MIMO antenna to reduce the mutual coupling," Int. J. Electron. Commun. (AEU), Vol. 105, 42-53, 2019.
doi:10.1016/j.aeue.2019.04.002 Google Scholar
4. Xi, L., H. Zhai, and L. Li, "A low-profile antenna system with a compact new structure for reducing mutual coupling," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 1, 71-83, 2018.
doi:10.1080/09205071.2018.1524796 Google Scholar
5. Babashah, H., H. R. Hassani, and S. Mohammad-Ali-Nezhad, "A compact UWB printed monopole MIMO antenna with mutual coupling reduction," Progress In Electromagnetics Research C, Vol. 91, 55-67, 2019.
doi:10.2528/PIERC19010905 Google Scholar
6. Liu, Y., X. Yang, Y. Jia, and Y. Jay Guo, "A low correlation and mutual coupling MIMO antenna," IEEE Access, Vol. 7, 127384-127392, 2019.
doi:10.1109/ACCESS.2019.2939270 Google Scholar
7. El Ouahabi, M., A. Zakriti, M. Essaaidi, A. Dkiouak, and E. Hanae, "A miniaturized dual-band MIMO antenna with low mutual coupling for wireless applications," Progress In Electromagnetics Research C, Vol. 93, 93-101, 2019.
doi:10.2528/PIERC19032601 Google Scholar
8. Gurjar, R., D. K. Upadhyay, B. K. Kanaujia, and K. Sharma, "A novel compact self-similar fractal UWB MIMO antenna," Int. J. RF Microw. Comput. Aided Eng., e21632, 2018. Google Scholar
9. Nadeem, I. and D.-Y. Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 2019. Google Scholar
10. Salehi, M. and A. Tavakoli, "A novel low mutual coupling microstrip antenna array design using the defected ground structure," Int. J. Electron. Commun. (AEU), 718-723, 2006.
doi:10.1016/j.aeue.2005.12.009 Google Scholar
11. Anitha, R., V. P. Sarin, P. Mohanan, and K. Vasudevan, "Enhanced isolation with defected ground structure in MIMO antenna," Electronics Letters, Vol. 50, No. 24, 1784-1786, November 20, 2014.
doi:10.1049/el.2014.2795 Google Scholar
12. Luo, C.-M., J.-S. Hong, and L.-L. Zhong, "Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1766-1769, 2015.
doi:10.1109/LAWP.2015.2423318 Google Scholar
13. Sun, X.-B. and M. Y. Cao, "Low mutual coupling antenna array for WLAN application," Electronics Letters, Vol. 53, No. 6, 368-370, March 16, 2017.
doi:10.1049/el.2016.4563 Google Scholar
14. Kumar, N. and U. K. Kommuri, "MIMO antenna H-plane isolation enhancement using UC-EBG structure and metal line strip for WLAN applications," Radio Engineering, Vol. 29, No. 2, 399-406, June 2019. Google Scholar
15. Xiao, S., M.-C. Tang, Y.-Y. Bai, S. Gao, and B.-Z. Wang, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microw. Antennas Propag., Vol. 5, No. 12, 1488-1494, 2011.
doi:10.1049/iet-map.2010.0154 Google Scholar
16. Ghaloua, A., J. Zbitou, L. El Abdellaoui, M. Latrach, A. Tajmouati, and A. Errkik, "Reduction of mutual coupling between closely spaced microstrip antennas arrays using electromagnetic band-gap (2D-EBG) structures," TELKOMNIKA, Vol. 16, No. 1, 151-158, February 2018, ISSN: 1693-6930.
doi:10.12928/telkomnika.v16i1.7017 Google Scholar
17. Thakur, E., N. Jaglan, S. D. Gupta, and B. K. Kanaujia, "A compact notched UWB MIMO antenna with enhanced performance," Progress In Electromagnetics Research C, Vol. 91, 39-53, 2019.
doi:10.2528/PIERC18120202 Google Scholar
18. Dwairi, M. O., M. S. Soliman, A. A. Alahmadi, S. H. A. Almalki, and I. I. M. Abu Sulayman, "Design and performance analysis of fractal regular slotted-patch antennas for ultra-wideband communication systems," Wireless Personal Communications, Vol. 105, 819-833, February 5, 2019. Google Scholar
19. Biswas, A. K., A. Kundu, A. K. Bhattacharjee, and U. Chakraborty, "Isolator-based mutual coupling reduction of H-shaped patches in MIMO antenna applications," Advances in Computer, Communication and Control, Lecture Notes in Networks and Systems, Vol. 41, 361-366, 2019.
doi:10.1007/978-981-13-3122-0_34 Google Scholar
20. Ghosh, J., D. Mitra, and S. Das, "Mutual coupling reduction of slot antenna array by controlling surface wave propagation," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1352-1357, February 2019.
doi:10.1109/TAP.2018.2883524 Google Scholar
21. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 1917-1924, 2015.
doi:10.1109/TAP.2015.2406892 Google Scholar
22. Choukiker, Y. K., S. K. Sharma, and S. K. Behera, "Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1483-1488, March 2014.
doi:10.1109/TAP.2013.2295213 Google Scholar
23. Lalbakhsh, A., A. A. Lotfi Neyestanak, and M. Naser-Moghaddasi, "Microstrip hairpin bandpass filter using modified minkowski fractal-shape for suppression of second harmonic," IEICE Trans. Electron., Vol. E95-C, No. 3, 378-381, March 2012.
doi:10.1587/transele.E95.C.378 Google Scholar
24. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3328-3335, May 2020.
doi:10.1109/TAP.2020.2969888 Google Scholar
25. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, S. L. Smith, and B. A. Zeb, "Single-dielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1916-1921, March 2019.
doi:10.1109/TAP.2019.2891232 Google Scholar
26. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicensed frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.
doi:10.1109/TAP.2019.2891232 Google Scholar
27. Papadopoulos, K. A., C. A. Papagianni, P. K. Gkonis, I. S. Venieris, and D. I. Kaklamani, "Particle swarm optimization of antenna arrays with efficiency constraints," Progress In Electromagnetics Research M, Vol. 17, 237-251, 2011.
doi:10.2528/PIERM11012504 Google Scholar
28. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multi-objective particle swarm optimization to design a time delay equalizer metasurface for an electromagnetic band gap resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 912-915, 2016. Google Scholar
29. Jamshidi, M., A. Lalbakhsh, B. Mohamadzade, H. Siahkamari, and S. M. H. Mousavi, "A novel neural-based approach for design of microstrip filters," Int. J. Electron. Commun. (AEU), Vol. 110, 152847, 2019.
doi:10.1016/j.aeue.2019.152847 Google Scholar
30. Wang, M., T.-H. Loh, Y. Zhao, and Q. Xu, "A closed-form formula of radiation and total efficiency for lossy multiport antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2468-2472, 2019.
doi:10.1109/LAWP.2019.2940382 Google Scholar