Vol. 108
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-12
The Coefficient of Variation as a Performance Metric of MIMO Antenna Systems Under Arbitrary Handset Orientations
By
Progress In Electromagnetics Research C, Vol. 108, 171-185, 2021
Abstract
The Coefficient of Variation (CoV) is investigated, studied, and proposed as an alternative and important performance metric to describe the effects of handset orientation on the capacity of Multiple-Input-Multiple-Output (MIMO) systems. We combine 3-D simulated radiation patterns of a base station and handset and their associated scattering parameters in two anisotropic propagation environments. The capacity is evaluated as the handset rotates about the X-Y-Z axes using standard Euler's angles. The coefficient of variation is numerically derived by rotating the handset over the Euler angles (φ, θ, ψ) in each direction every 15° about each axis over a full sphere where each rotation involves the creation of numerous instances of the propagation environment depending on the statistical robustness of the results sought. Three antenna array geometries operating at a frequency of 2.45 GHz are examined using two different propagation channel models (TGnB and TGnF) to verify the validity of the proposed approach. The derived results suggest that the proposed CoV is an effective and practical reasonable metric in selecting the best antenna system design, where ``best'' here refers to the design with the ability to reach the highest throughput of the designs considered.
Citation
Abbas Al-Wahhamy, Hussain M. Al-Rizzo, and Nicholas E. Buris, "The Coefficient of Variation as a Performance Metric of MIMO Antenna Systems Under Arbitrary Handset Orientations," Progress In Electromagnetics Research C, Vol. 108, 171-185, 2021.
doi:10.2528/PIERC20091603
References

1. Lehne, P. H., K.Mahmood, A. A. Glazunov, et al. "Measuring user-induced randomness to evaluate smart phone performance in real environments," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-5, Apr. 2015.        Google Scholar

2. Al-Wahhamy, A., N. E. Buris, H. M. Al-Rizzo, and S. Yahya, "An efficient paradigm for evaluating the channel capacity of closed-loop massive MIMO systems," Progress In Electromagnetics Research C, Vol. 98, 1-16, 2020.
doi:10.2528/PIERC19082806        Google Scholar

3. Al-Wahhamy, A., H. Al-Rizzo, and N. E. Buris, "Efficient evaluation of massive MIMO channel capacity," IEEE Syst. J., Vol. 14, No. 1, 614-620, Mar. 2020.
doi:10.1109/JSYST.2019.2900006        Google Scholar

4. Isaac, A. A., H. Al-Rizzo, S. Yahya, A. Al-Wahhamy, and S. Abushamleh, "Decoupling of two closely-spaced planar monopole antennas using two novel printed-circuit structures," Microw. Opt. Technol. Lett., Vol. 60, No. 12, 2954-2963, Dec. 2018.
doi:10.1002/mop.31405        Google Scholar

5. Abbosh, A., H. Al-Rizzo, S. Yahya, and A. Al-Wahhamy, "Decoupling and MIMO performance of two planar monopole antennas with protruded strips," Microw. Opt. Technol. Lett., Vol. 60, No. 11, 2712-2718, Nov. 2018.
doi:10.1002/mop.31487        Google Scholar

6. Isaac, A. A., H. Al-Rizzo, S. Yahya, A. Al-Wahhamy, and S. Z. Tariq, "Miniaturised MIMO antenna array of two vertical monopoles embedded inside a planar decoupling network for the 2.4 GHz ISM band," IET Microwaves, Antennas Propag., Vol. 14, No. 1, 132-140, Jan. 2020.
doi:10.1049/iet-map.2018.5069        Google Scholar

7. Soltani, M. D., A. A. Purwita, Z. Zeng, H. Haas, and M. Safari, "Modeling the random orientation of mobile devices: Measurement, analysis and LiFi use case," IEEE Trans. Commun., Vol. 67, No. 3, 2157-2172, Mar. 2019.
doi:10.1109/TCOMM.2018.2882213        Google Scholar

8. Soltani, M. D., H. Kazemi, M. Safari, and H. Haas, "Handover modeling for indoor Li-Fi cellular networks: The effects of receiver mobility and rotation," 2017 IEEE Wireless Communications and Networking Conference (WCNC), 1-6, Mar. 2017.        Google Scholar

9. Purwita, A. A., M. Dehghani Soltani, M. Safari, and H. Haas, "Impact of terminal orientation on performance in LiFi systems," 2018 IEEE Wireless Communications and Networking Conference (WCNC), 1-6, Apr. 2018.        Google Scholar

10. Almesaeed, R., A. S. Ameen, A. Doufexi, and A. R. Nix, "Exploiting the elevation dimension of MIMO system for boosting handset capacity," 2015 IEEE International Conference on Communication Workshop (ICCW), 1281-1285, Jun. 2015.
doi:10.1109/ICCW.2015.7247354        Google Scholar

11. Mellios, E., Z. Mansor, G. S. Hilton, A. R. Nix, and J. P. McGeehan, "Impact of antenna pattern and handset rotation on macro-cell and pico-cell propagation in heterogeneous LTE networks," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Jul. 2012.        Google Scholar

12. Harrysson, F., J. Medbo, A. F. Molisch, A. J. Johansson, and F. Tufvesson, "Efficient experimental evaluation of a MIMO handset with user influence," IEEE Trans. Wirel. Commun., Vol. 9, No. 2, 853-863, Feb. 2010.
doi:10.1109/TWC.2010.02.090588        Google Scholar

13. Buris, N. E., M. Abdul-Gaffoor, and E. Krenz, "Capacity based MIMO antenna design," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1695-1696, Jul. 2017.        Google Scholar

14. Dao, M.-T., V.-A. Nguyen, Y.-T. Im, S.-O. Park, and G. Yoon, "3D polarized channel modeling and performance comparison of MIMO antenna configurations with different polarizations," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2672-2682, Jul. 2011.
doi:10.1109/TAP.2011.2152319        Google Scholar

15. Razavi, A., A. A. Glazunov, P. S. Kildal, and J. Yang, "Characterizing polarization-MIMO antennas in Random-LOS propagation channels," IEEE Access, 2016.        Google Scholar

16. Razavi, A. and A. A. Glazunov, "Probability of detection functions of polarization-MIMO systems in Random-LOS," IEEE Access, 2017.        Google Scholar

17. Soltani, M. D., A. A. Purwita, Z. Zeng, H. Haas, and M. Safari, "Modeling the random orientation of mobile devices: Measurement, analysis and LiFi use case," IEEE Trans. Commun., 2019.        Google Scholar

18. Watthanapak, W., A. Namahoot, and S. Chalermwisutkul, "Effects of reader antenna orientation on received signal strength of UHF RFID tags for handheld reader localization," 2019 Research, Invention, and Innovation Congress (RI2C), 1-4, Dec. 2019.        Google Scholar

19. Lehne, P. H., A. A. Glazunov, K. Mahmood, and P.-S. Kildal, "Analyzing smart phones’ 3D accelerometer measurements to identify typical usage positions in voice mode," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-5, Apr. 2016.        Google Scholar

20. Blum, J. R., D. G. Greencorn, and J. R. Cooperstock, Smartphone Sensor Reliability for Augmented Reality Applications, 127-138, Springer, Berlin, 2013.

21. Incel, O., "Analysis of movement, orientation and rotation-based sensing for phone placement recognition," Sensors, Vol. 15, No. 10, 25474-25506, Oct. 2015.
doi:10.3390/s151025474        Google Scholar

22. Amiri Sani, A., L. Zhong, and A. Sabharwal, "Directional antenna diversity for mobile devices," Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking — MobiCom’10, 221, 2010.
doi:10.1145/1859995.1860021        Google Scholar

23. Dehghani Soltani, M., X. Wu, M. Safari, and H. Haas, "Access point selection in Li-Fi cellular networks with arbitrary receiver orientation," 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 1-6, Sep. 2016.        Google Scholar

24. Razavi, A., A. A. Glazunov, P. Kildal, and J. Yang, "Investigation of polarization deficiencies in SIMO systems in Random-LOS propagation channels," 2015 International Symposium on Antennas and Propagation (ISAP), Vol. 1, 1-3, 2015.        Google Scholar

25. Jazar, R. N., Theory of Applied Robotics, Springer, 2007.
doi:10.1007/978-0-387-68964-7

26. Brown, C. E., "Coefficient of variation," Applied Multivariate Statistics in Geohydrology and Related Sciences, 155-157, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.        Google Scholar

27. Chen, Z. N., Antennas for Portable Devices, John Wiley & Sons, Ltd, 2007.
doi:10.1002/9780470319642

28. Rabinovich, V., N. Alexandrov, and B. Alkhateeb, Automotive Antenna Design and Applications, CRC Press, 2017.
doi:10.1201/9781439804094

29. Liang, Z. X., et al., "Improved hybrid leapfrog ADI-FDTD method for simulating near-field coupling effects among multiple thin wire monopole antennas on a complex platform," IEEE Trans. Electromagn. Compat., 2017.        Google Scholar

30. Zhang, Z., Antenna Design for Mobile Devices, 2nd Ed., John Wiley & Sons (Asia) Pte Ltd, 2017.
doi:10.1002/9781119132332

31. NEBENS "MIMObit,", http://www.nebens.com, 2018.        Google Scholar

32. CST MICROWAVE STUDIO "CST MICROWAVE STUDIO,", https://www.cst.com, 2018.        Google Scholar

33. Singh, H. S., G. K. Pandey, P. K. Bharti, and M. K. Meshram, "A compact dual band MIMO/diversity antenna for WLAN applications," 2013 Students Conference on Engineering and Systems (SCES), 1-5, Apr. 2013.        Google Scholar

34. Biswal, S. P. and S. Das, "Two-element printed PIFA-MIMO antenna system for WiMAX and WLAN applications," IET Microwaves, Antennas Propag., Vol. 12, No. 14, 2262-2270, Nov. 2018.
doi:10.1049/iet-map.2018.5271        Google Scholar

35. Biswal, S. P. and S. Das, "A dual band MIMO PIFA for WLAN application," 2017 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 121-122, Jul. 2017.        Google Scholar

36. Chattha, H. T., M. Nasir, Q. H. Abbasi, Y. Huang, and S. S. AlJa’afreh, "Compact low-profile dual-port single wideband planar inverted-F MIMO antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1673-1675, 2013.
doi:10.1109/LAWP.2013.2293765        Google Scholar

37. Singh, A., S. K. Dash, and V. R. Gupta, "Dual feed planar inverted-F antenna for MIMO application," 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), 1-4, Apr. 2017.        Google Scholar

38. Al-Wahhamy, A., H. Al-Rizzo, and N. E. Buris, "On the modeling of antenna arrays for massive MIMO systems," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1565-1566, Jul. 2018.        Google Scholar

39. Estrada, J. H., E. A. Cano-Plata, C. Younes-Velosa, and C. L. Cortes, "Entropy and coefficient of variation (CV) as tools for assessing power quality," Ing. e Investig., 2011.        Google Scholar

40. Krishnamoorthy, K., Handbook of Statistical Distributions with Applications, Chapman and Hall/CRC, 2016.
doi:10.1201/b19191

41. Sammarco, P. W., A.Winter, and J. C. Stewart, "Coefficient of variation of Sea Surface Temperature (SST) as an indicator of coral bleaching," Mar. Biol., Vol. 149, No. 6, 1337-1344, Sep. 2006.
doi:10.1007/s00227-006-0318-0        Google Scholar

42. Shechtman, O., The Coefficient of Variation as an Index of Measurement Reliability, 39-49, Springer, 2013.