1. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402 Google Scholar
2. Park, W.-K., K.-J. Lee, H.-P. Kim, and S.-H. Son, "Application of MUSIC to microwave imaging for detection of dielectric anomalies," Progress In Electromagnetics Research Symposium — Spring (PIERS), 2908-2912, St. Petersburg, Russia, May 22–25, 2017. Google Scholar
3. Lee, K. J., S. H. Son, and W. K. Park, "A real-time microwave imaging of unknown anomaly with and without diagonal elements of scattering matrix," Results in Physics, Vol. 17, 103104, 2020.
doi:10.1016/j.rinp.2020.103104 Google Scholar
4. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3217-3223, 2008.
doi:10.1109/TAP.2008.929434 Google Scholar
5. Ammari, H., E. Lakovleva, and D. Lesselier, "A MUSIC algorithm for locating small inclusions in a half-space from scattering amplitude at a fixed frequency," SIAM Multiscale Model. Simul., Vol. 3, 597-628, 2005.
doi:10.1137/040610854 Google Scholar
6. Fazli, R., M. Nakhkash, and A. A. Heidari, "Alleviating the practical restrictions for MUSIC algorithm in actual microwave imaging systems: Experimental assessment," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3108-3118, 2014.
doi:10.1109/TAP.2014.2313632 Google Scholar
7. Solimene, R., A. DellAversano, and G. Leone, "Interferometric time reversal MUSIC for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012.
doi:10.2528/PIER12062103 Google Scholar
8. Wax, W. and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. on Acoustic, Speech, and Signal Processing, Vol. 33, 387-392, 1985.
doi:10.1109/TASSP.1985.1164557 Google Scholar
9. Xiao, M., P. Wei, and H. M. Tai, "Estimation of the number of sources based on hypothesis testing," Journal of Communications and Networks, Vol. 14, No. 5, 481-486, 2012.
doi:10.1109/JCN.2012.00004 Google Scholar
10. He, Z., A. Cichocki, S. Xie, and K. Choi, "Detection the number of clusters in n-way probabilistic clustering," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 32, No. 11, 2006-2021, 2010.
doi:10.1109/TPAMI.2010.15 Google Scholar
11. Liavas, A. P. and P. A. Regalia, "On the behavior of information theoretic criteria for model order selection," IEEE Trans. on Signal Processing, Vol. 49, No. 8, 1689-1695, 2001.
doi:10.1109/78.934138 Google Scholar
12. Pouramadi, M., M. Nakhkash, and A. A. Tadion, "Application of MDL criterion for microwave imaging by MUSIC algorithm," Progress In Electromagnetics Research B, Vol. 40, 261-278, 2012.
doi:10.2528/PIERB12031001 Google Scholar
13. Fazli, R. and M. Nakhkash, "An analytical approach to estimate the number of small scatterers in 2D inverse scattering problems," Inverse Prob., Vol. 28, No. 7, 75012-75033, 2012.
doi:10.1088/0266-5611/28/7/075012 Google Scholar
14. Wax, M. and I. Ziskind, "Detection of the number of coherent signals by the MDL principle," IEEE Trans. on Acoustic, Speech, and Signal Processing, Vol. 37, No. 8, 1190-1196, 1989.
doi:10.1109/29.31267 Google Scholar
15. Wax, W. and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. on Acoustic, Speech, and Signal Processing, Vol. 33, 387-392, 1985.
doi:10.1109/TASSP.1985.1164557 Google Scholar
16. Ding, Q. and S. Kay, "Inconsistency of the MDL: On the performance of model order selection criteria with increasing signal-to-noise ratio," IEEE Trans. on Signal Processing, Vol. 59, 1959-1969, 2011.
doi:10.1109/TSP.2011.2108293 Google Scholar
17. Ridder, F., R. Pintelon, J. Schoukens, and D. P. Gillikin, "Modified AIC and MDL model selection criteria for short data records," IEEE Trans. on Instrumentation and Measurement, Vol. 54, 144-150, 2005.
doi:10.1109/TIM.2004.838132 Google Scholar
18. Kundu, D., "Estimating the number of signals in the presence of white noise," Journal of Statistical Planning and Inference Elsevier, Vol. 90, No. 4, 57-68, 2000.
doi:10.1016/S0378-3758(00)00102-6 Google Scholar
19. Belkebir, K. and M. Saillard, "Testing inversion algorithms against experimental data," Inverse Probl., Vol. 17, 1565-1571, 2001.
doi:10.1088/0266-5611/17/6/301 Google Scholar
20. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. Lovetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Trans. Biomedical Eng., Vol. 57, No. 4, 894-904, 2010.
doi:10.1109/TBME.2009.2036372 Google Scholar
21. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Probl., Vol. 25, 055004-055018, 2009.
doi:10.1088/0266-5611/25/5/055004 Google Scholar
22. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089 Google Scholar
23. Zheng, H., M. Z. Wang, Z. Q. Zhao, and L. L. Li, "A novel linear EM reconstruction algorithm with phaseless data," Progress In Electromagnetics Research Letters, Vol. 14, 133-146, 2010.
doi:10.2528/PIERL10031306 Google Scholar
24. Caorsi, S., M. Donelli, and A. Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. on Microwave Theory and Tech., Vol. 52, 1217-1228, 2004.
doi:10.1109/TMTT.2004.825699 Google Scholar