1. Stinehelfer, H. E., "An accurate calculation of uniform microstrip transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 16, No. 7, 439-444, 1968. Google Scholar
2. Edward, G. C., "Theory and design of transmission line all-pass equalizers," IEEE Trans. Microw. Theory Tech., Vol. 17, No. 1, 28-38, 1969. Google Scholar
3. Kimionis, J., A. Collado, M. M. Tentzeris, and A. Georgiadis, "Octave and decade printed uwb rectifiers based on nonuniform transmission lines for energy harvesting," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 11, 4326-4334, 2017. Google Scholar
4. Zhao, Y., S. Hemour, T. Liu, and K. Wu, "Nonuniformly distributed electronic impedance synthesizer," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 11, 4883-4897, 2018. Google Scholar
5. Ramirez, A. I., A. Semlyen, and R. Iravani, "Modeling nonuniform transmission lines for time domain simulation of electromagnetic transients," IEEE Trans. Power Deliv., Vol. 18, No. 3, 968-974, 2003. Google Scholar
6. Lu, K., "An efficient method for analysis of arbitrary nonuniform transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 9-14, 1997. Google Scholar
7. Nikoo, M. S. and S. M.-A. Hashemi, "New soliton solution of a varactor-loaded nonlinear transmission line," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 11, 4084-4092, 2017. Google Scholar
8. Schleder, G. R., A. C. M. Padilha, C. M. Acosta, M. Costa, and A. Fazzio, "From DFT to machine learning: Recent approaches to materials science — A review," J. Phys. Materials, Vol. 2, No. 3, 032001, 2019. Google Scholar
9. Iten, R., T. Metger, H. Wilming, L. Del Rio, and R. Renner, "Discovering physical concepts with neural networks," Phys. Rev. Lett., Vol. 124, No. 1, 010508, 2020. Google Scholar
10. Sugihara, G., R. May, H. Ye, C.-H. Hsieh, E. Deyle, M. Fogarty, and S. Munch, "Detecting causality in complex ecosystems," Science, Vol. 338, No. 6106, 496-500, 2012. Google Scholar
11. Ye, H., R. J. Beamish, S. M. Glaser, S. C. H. Grant, C.-H. Hsieh, L. J. Richards, J. T. Schnute, and G. Sugihara, "Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling," Proc. Natl. Acad. Sci. U. S. A., Vol. 112, No. 13, E1569-E1576, 2015. Google Scholar
12. Kevrekidis, I. G., C. William Gear, J. M. Hyman, P. G. Kevrekidid, O. Runborg, C. Theodoropoulos, et al. "Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level analysis," Commun. Math. Sci., Vol. 1, No. 4, 715-762, 2003. Google Scholar
13. Voss, H. U., P. Kolodner, M. Abel, and J. Kurths, "Amplitude equations from spatiotemporal binary-fluid convection data," Phys. Rev. Lett., Vol. 83, No. 17, 3422, 1999. Google Scholar
14. Guo, L. and S. A. Billings, "Identification of partial differential equation models for continuous spatio-temporal dynamical systems," IEEE Trans. Circuits Syst. II — Express Briefs, Vol. 53, No. 8, 657-661, 2006. Google Scholar
15. Guo, L. Z., S. A. Billings, and D. Coca, "Identification of partial differential equation models for a class of multiscale spatio-temporal dynamical systems," Int. J. Control, Vol. 83, No. 1, 40-48, 2010. Google Scholar
16. Gonzalez-Garcia, R., R. Rico-Martinez, and I. G. Kevrekidis, "Identification of distributed parameter systems: A neural net based approach," Comput. Chem. Eng., Vol. 22, S965-S968, 1998. Google Scholar
17. Giannakis, D. and A. J. Majda, "Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability," Proc. Natl. Acad. Sci. U. S. A., Vol. 109, No. 7, 2222-2227, 2012. Google Scholar
18. Roberts, A. J., "Model emergent dynamics in complex systems," SIAM, Vol. 20, 2014. Google Scholar
19. Majda, A. J., C. Franzke, and D. Crommelin, "Normal forms for reduced stochastic climate models," Proc. Natl. Acad. Sci. U. S. A., Vol. 106, No. 10, 3649-3653, 2009. Google Scholar
20. Daniels, B. C. and I. Nemenman, "Automated adaptive inference of phenomenological dynamical models," Nat. Commun., Vol. 6, No. 1, 1-8, 2015. Google Scholar
21. Bongard, J. and H. Lipson, "Automated reverse engineering of nonlinear dynamical systems," Proc. Natl. Acad. Sci. U. S. A., Vol. 104, No. 24, 9943-9948, 2007. Google Scholar
22. Schmidt, M. and H. Lipson, "Distilling free-form natural laws from experimental data," Science, Vol. 324, No. 5923, 81-85, 2009. Google Scholar
23. Raissi, M. and G. E. Karniadakis, "Hidden physics models: Machine learning of nonlinear partial differential equations," J. Comput. Phys., Vol. 357, 125-141, 2018. Google Scholar
24. Raissi, M., P. Perdikaris, and G. E. Karniadakis, "Physics informed deep learning (part II, Data-driven discovery of nonlinear partial differential equations,", arxiv. arXiv preprint arXiv:1711.10561, 2017. Google Scholar
25. Long, Z., Y. Lu, and B. Dong, "PDE-Net 2.0: Learning pdes from data with a numericsymbolic hybrid deep network," J. Comput. Phys., Vol. 399, 108925, 2019. Google Scholar
26. Brunton, S. L., J. L. Proctor, and J. N. Kutz, "Discovering governing equations from data by sparse identification of nonlinear dynamical systems," Proc. Natl. Acad. Sci. U. S. A., Vol. 113, No. 15, 3932-3937, 2016. Google Scholar
27. Schaeffer, H., "Learning partial differential equations via data discovery and sparse optimization," Proc. R. Soc. A — Math. Phys. Eng. Sci., Vol. 473, No. 2197, 20160446, 2017. Google Scholar
28. Rudy, S. H., S. L. Brunton, J. L. Proctor, and J. N. Kutz, "Data-driven discovery of partial differential equations," Sci. Adv., Vol. 3, No. 4, e1602614, 2017. Google Scholar
29. Champion, K., B. Lusch, J. N. Kutz, and S. L. Brunton, "Data-driven discovery of coordinates and governing equations," Proc. Natl. Acad. Sci. U. S. A., Vol. 116, No. 45, 22445-22451, 2019. Google Scholar
30. Mangan, N. M., S. L. Brunton, J. L. Proctor, and J. N. Kutz, "Inferring biological networks by sparse identification of nonlinear dynamics," IEEE Trans. Mol. Biol. Multi-Scale Commun., Vol. 2, No. 1, 52-63, 2016. Google Scholar
31. Himanen, L., A. Geurts, A. S. Foster, and P. Rinke, "Data-driven materials science: Status, challenges, and perspectives," Adv. Sci., Vol. 6, No. 21, 1900808, 2019. Google Scholar
32. Murphy, K. P., Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
33. Hoerl, A. E. and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, Vol. 12, No. 1, 55-67, 1970. Google Scholar
34. LeVeque, R. J., "Finite difference methods for ordinary and partial differential equations: Steady-state and time-dependent problems," SIAM, Vol. 98, 2007. Google Scholar
35. Nathan Kutz, J., Data-driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data, Oxford University Press, 2013.
36. Elsherbeni, A. Z., V. Demir, et al. The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations, SciTech Pub., 2009.
37. Knowles, I. and R. J. Renka, "Methods for numerical differentiation of noisy data," Electron. J. Differ. Equ., Vol. 21, 235-246, 2014. Google Scholar
38. Bruno, O. and D. Hoch, "Numerical differentiation of approximated functions with limited order-ofaccuracy deterioration," SIAM J. Numer. Anal., Vol. 50, No. 3, 1581-1603, 2012. Google Scholar
39. Nevels, R. and J. Miller, "A simple equation for analysis of nonuniform transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 4, 721-724, 2001. Google Scholar
40. Watanabe, K., T. Sekine, and Y. Takahashi, "A FDTD method for nonuniform transmission line analysis using Yee’s-lattice and wavelet expansion," 2009 IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, 83-86, 2009. Google Scholar
41. Sebastiano, G. S., P. Pantano, and P. Tucci, "An electrical model for the Korteweg-de Vries equation," Am. J. Phys., Vol. 52, No. 3, 238-243, 1984. Google Scholar
42. Ludu, A., Nonlinear Waves and Solitons on Contours and Closed Surfaces, Springer Science & Business Media, 2012.
43. Darling, J. D. C. and P. W. Smith, "High-power pulsed RF extraction from nonlinear lumped element transmission lines," IEEE Trans. Plasma Sci., Vol. 36, No. 5, 2598-2603, 2008. Google Scholar
44. Kuek, N. S., A. C. Liew, E. Schamiloglu, and J. O. Rossi, "Circuit modeling of nonlinear lumped element transmission lines including hybrid lines," IEEE Trans. Plasma Sci., Vol. 40, No. 10, 2523-2534, 2012. Google Scholar
45. Ricketts, D. S., X. Li, M. DePetro, and D. Ham, "A self-sustained electrical soliton oscillator," IEEE MTT-S International Microwave Symposium Digest, 4, IEEE, 2005. Google Scholar
46. Raissi, M., A. Yazdani, and G. E. Karniadakis, "Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations," Science, Vol. 367, No. 6481, 1026-1030, 2020. Google Scholar