1. Feng, B., et al., "HetNet: A flexible architecture for heterogeneous satellite-terrestrial networks," IEEE Netw., Vol. 31, No. 6, 86-92, 2017.
doi:10.1109/MNET.2017.1600330 Google Scholar
2. Sarma, A., S. Chakraborty, and S. Nandi, "Deciding handover points based on context-aware load balancing in a WiFi-WiMAX heterogeneous network environment," IEEE Trans. Veh. Technol., Vol. 65, No. 1, 348-357, 2016.
doi:10.1109/TVT.2015.2394371 Google Scholar
3. Meier, R. C., K. Dettloff, and J. G. Waclawsky, System and method for integrated WiFi/WiMax neighbor AP discovery and AP advertisement, Google Patents, Feb. 12, 2013.
4. Wang, W., X. Liu, J. Vicente, and P. Mohapatra, "Integration gain of heterogeneous WiFi/WiMAX networks," IEEE Trans. Mob. Comput., Vol. 10, No. 8, 1131-1143, 2011.
doi:10.1109/TMC.2010.232 Google Scholar
5. Lin, H., Y. Lin, W. Chang, and R. Cheng, "An integrated WiMAX/WiFi architecture with QoS consistency over broadband wireless networks," 6th IEEE Consumer Communications and Networking Conference, 1-7, 2009. Google Scholar
6. Niyato, D. and E. Hossain, "Wireless broadband access: WIMAX and beyond — Integration of WiMAX and WiFi: Optimal pricing for bandwidth sharing," IEEE Commun. Mag., Vol. 45, No. 5, 140-146, 2007.
doi:10.1109/MCOM.2007.358861 Google Scholar
7. Haghighi, M., Z. Qin, D. Carboni, U. Adeel, F. Shi, and J. A. McCann, "Game theoretic and auction-based algorithms towards opportunistic communications in LPWA LoRa networks," IEEE 3rd World Forum on Internet of Things (WF-IoT), 735-740, 2016. Google Scholar
8. Pasolini, G., et al., "Smart city pilot projects using LoRa and IEEE802.15.4 technologies," Sensors, Vol. 18, No. 4, 1118, 2018.
doi:10.3390/s18041118 Google Scholar
9. Lian, L. and L. Li, "Wireless dimming system for LED street lamp based on ZigBee and GPRS," 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization, Vol. 2, 100-102, 2012. Google Scholar
10. Counselman, C. C., "Multipath-rejecting GPS antennas," Proc. IEEE, Vol. 87, No. 1, 86-91, 1999.
doi:10.1109/5.736343 Google Scholar
11. Chen, K., J. Yuan, and X. Luo, "Compact dual-band dual circularly polarised annular-ring patch antenna for BeiDou navigation satellite system application," IET Microwaves, Antennas Propag., Vol. 11, No. 8, 1079-1085, 2017.
doi:10.1049/iet-map.2016.1057 Google Scholar
12. Wang, Z., R. She, J. Han, S. Fang, and Y. Liu, "Dual-band dual-sense circularly polarized stacked patch antenna with a small frequency ratio for UHF RFID reader applications," IEEE Access, Vol. 5, 15260-15270, 2017.
doi:10.1109/ACCESS.2017.2733625 Google Scholar
13. Wang, S., L. Zhu, and W. Wu, "3-D printed inhomogeneous substrate and superstrate for application in dual-band and dual-CP stacked patch antenna," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2236-2244, 2018.
doi:10.1109/TAP.2018.2810330 Google Scholar
14. Yue, T., Z. H. Jiang, and D. H. Werner, "A compact metasurface-enabled dual-band dual-circularly polarized antenna loaded with complementary split ring resonators," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 794-803, 2019.
doi:10.1109/TAP.2018.2882616 Google Scholar
15. Li, K., L. Li, Y. M. Cai, C. Zhu, and C. H. Liang, "A novel design of low-profile dual-band circularly polarized antenna with meta-surface," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1650-1653, 2015.
doi:10.1109/LAWP.2015.2417169 Google Scholar
16. Liang, Z., D. Yang, X. Wei, and E. Li, "Dual-band dual circularly polarized microstrip antenna with two eccentric rings and an arc-shaped conducting strip," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 834-837, 2016.
doi:10.1109/LAWP.2015.2476505 Google Scholar
17. Kumar, K. and S. Dwari, "Dual-band dual-sense circularly polarized substrate integrated waveguide antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 3, 521-524, 2018.
doi:10.1109/LAWP.2018.2800295 Google Scholar
18. Tao, J. and Q. Feng, "Dual-band magnetoelectric dipole antenna with dual-sense circularly polarized character," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 5677-5685, 2017.
doi:10.1109/TAP.2017.2748282 Google Scholar
19. Le, T. T. and H. H. Tran, "Dual-band dual-sense circularly polarized antenna based on crossed dipole structure for WLAN/WiMAX applications," Int. J. RF Microw. Comput. Eng., Vol. 29, No. 10, e21866, 2019. Google Scholar
20. Altshuler, E. E. and D. S. Linden, "Wire-antenna designs using genetic algorithms," IEEE Antennas Propag. Mag., Vol. 39, No. 2, 33-43, 1997.
doi:10.1109/74.584498 Google Scholar
21. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas," IEEE Antennas Propag. Mag., Vol. 45, No. 3, 9-28, 2003.
doi:10.1109/MAP.2003.1232160 Google Scholar
22. Best, S. R., "A discussion on the quality factor of impedance matched electrically small wire antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 502-508, 2005.
doi:10.1109/TAP.2004.837107 Google Scholar
23. Caswell, D. J. and G. B. Lamont, "Wire-antenna geometry design with multiobjective genetic algorithms," Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, 2002. Google Scholar
24. Altshuler, E. E. and T. H. O’Donnell, "An electrically small multi-frequency genetic antenna immersed in a dielectric powder," IEEE Antennas Propag. Mag., Vol. 53, No. 5, 33-40, 2011.
doi:10.1109/MAP.2011.6138425 Google Scholar
25. Altshuler, E. E., "Electrically small self-resonant wire antennas optimized using a genetic algorithm," IEEE Antennas Propag. Mag., Vol. 50, No. 3, 297-300, 2002.
doi:10.1109/8.999619 Google Scholar
26. Altshuler, E. E. and D. S. Linden, "An electrically small genetic antenna immersed in a dielectric," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2007.
doi:10.1109/8.999619 Google Scholar
27. Benmahmoud, F., P. Lemaitre-Auger, and S. Tedjini, "Design of electrically small 3-D wire antennas for UHF RFID applications using genetic algorithm," XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-4, 2017. Google Scholar
28. Choo, H., R. L. Rogers, and H. Ling, "Design of electrically small wire antennas using a pareto genetic algorithm," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1038-1046, 2005.
doi:10.1109/TAP.2004.842404 Google Scholar
29. Altshuler, E. E. and D. S. Linden, "An ultrawide-band impedance-loaded genetic antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 3147-3151, 2004.
doi:10.1109/TAP.2004.834468 Google Scholar
30. Rengarajan, S. R. and Y. Rahmat-Samii, "On the cross-polarization characteristics of crooked wire antennas designed by genetic-algorithms," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2002. Google Scholar
31. Lohn, J. D., D. S. Linden, G. S. Hornby, and W. F. Kraus, "Evolutionary design of an X-band antenna for NASA’s space technology 5 mission," IEEE Antennas and Propagation Society Symposium, Vol. 3, No. 11, 2313-2316, 2004.
doi:10.1109/APS.2004.1331834 Google Scholar
32. Lohn, J. D., G. S. Hornby, and D. S. Linden, "Rapid re-evolution of an X-band antenna for NASA’s space technology 5 mission," Genetic Programming Theory and Practice III, 65-78, Springer, US, 2006.
doi:10.1007/0-387-28111-8_5 Google Scholar
33. Hornby, G., A. Globus, D. Linden, and J. Lohn, "Automated antenna design with evolutionary algorithms," Space, Vol. 5, 1-8, 2006. Google Scholar
34. Lohn, J. D., G. S. Hornby, and D. S. Linden, "Human-competitive evolved antennas," Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM, Vol. 22, No. 3, 235-247, 2008.
doi:10.1017/S0890060408000164 Google Scholar
35. Hornby, G. S., J. D. Lohn, and D. S. Linden, "Computer-automated evolution of an X-band antenna for NASA’s space technology 5 mission," Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM, Vol. 19, No. 1, 1-23, 2010. Google Scholar
36. Lohn, J. D., D. S. Linden, B. Blevins, T. Greenling, and M. R. Allard, "Automated synthesis of a lunar satellite antenna system," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1436-1444, 2015.
doi:10.1109/TAP.2015.2404332 Google Scholar
37. Coello Coello, C. A., G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-objective Problems, Springer, 2007.
38. Linden, D. S., "Using a real chromosome in a genetic algorithm for wire antenna optimization," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 1997. Google Scholar
39. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552 Google Scholar
40. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., Vol. 6, No. 2, 182-197, 2002.
doi:10.1109/4235.996017 Google Scholar
41. Baumgartner, U., C. Magele, K. Preis, and W. Renhart, "Particle swarm optimisation for Pareto optimal solutions in electromagnetic shape design," IEE Proc. Sci. Meas. Technol., Vol. 40, No. 2, 1172-1175, 2004. Google Scholar
42. Wu, J.-W., J.-Y. Ke, C. F. Jou, and C.-J. Wang, "Microstrip-fed broadband circularly polarised monopole antenna," IET Microwaves, Antennas Propag., Vol. 4, No. 4, 518-525, 2010.
doi:10.1049/iet-map.2008.0400 Google Scholar
43. Toh, B. Y., R. Cahill, and V. F. Fusco, "Understanding and measuring circular polarization," IEEE Trans. Educ., Vol. 46, No. 3, 313-318, 2003.
doi:10.1109/TE.2003.813519 Google Scholar
44. Le, T. T. and H. H. Tran, "Dual-band dual-sense circularly polarized antenna based on crossed dipole structure for WLAN/WiMAX applications," Int. J. RF Microw. Comput. Eng., Vol. 29, No. 10, 2019. Google Scholar