Vol. 107
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-18
A Star-Wheel Design of Single Crystal Sapphire Optical Fiber Promoting Single Mode Operation in the Infrared Regime
By
Progress In Electromagnetics Research C, Vol. 107, 219-231, 2021
Abstract
In this study, a star-wheel design of single crystal sapphire optical fiber is proposed to achieve single mode operation in the infrared regime. In the azimuthal direction the structure retains a reduced core of higher refractive index. It is connected to the outer boundary viastar-wheel configuration of segments. The region of alternating symmetrical truncated cavities of lower refractive index is air. The enclosed alternating layers of sapphire and air cavities around the reduced core function as cladding. Fiber structure in the azimuthal directionis uniformly distributed in the radial direction. Finite element method is employed to analyze the modal characteristics of fundamental and higher order modes. Under strongly guided approximation, the structure can effectively eliminate the large modal interference. The proposed waveguides, at operating wavelength of ~1.55 µm, with the diameter of ~50 µm, 75 µm, 100 µm, and 125 µm diameter, exhibit confinement loss of ~0.0314 dB/m, 0.0072 dB/m, 0.0023 dB/m, and 0.0009 dB/m, respectively. It is anticipated that such fiber can be a potential candidate in addressing a wide range of optical sensors and communication systems, which unable to sustain in extremely harsh environments. COMSOL multi-physics ® is used to perform numerical investigations.
Citation
Farhan Mumtaz, Yutang Dai, Muhammad Aqueel Ashraf, and Wenbin Hu, "A Star-Wheel Design of Single Crystal Sapphire Optical Fiber Promoting Single Mode Operation in the Infrared Regime," Progress In Electromagnetics Research C, Vol. 107, 219-231, 2021.
doi:10.2528/PIERC20111905
References

1. Mumtaz, F., M. A. Ashraf, Y. Dai, and W. Hu, "Numerical solution of strongly guided modes propagating in sapphire crystal fibers (α-Al2O3) for UV, VIS/IR wave-guiding," Results in Physics, Vol. 18, 103311, Sep. 2020.
doi:10.1016/j.rinp.2020.103311        Google Scholar

2. Katyba, G. M., K. I. Zaytsev, I. N. Dolganova, I. A. Shikunova, N. V. Chernomyrdin, S. O. Yurchenko, G. A. Komandin, I. V. Reshetov, V. V. Nesvizhevsky, and V. N. Kurlov, "Sapphire shaped crystals for waveguiding, sensing and exposure applications," Progress in Crystal Growth and Characterization of Materials, Vol. 64, No. 4, 133-151, Dec. 2018.
doi:10.1016/j.pcrysgrow.2018.10.002        Google Scholar

3. Chen, H., K. Liu, Y. Ma, F. Tian, and H. Du, "Nanostructured sapphire optical fiber for sensing in harsh environments," Micro-and Nanotechnology Sensors, Systems, and Applications IX, Vol. 10194, 101941P, International Society for Optics and Photonics, May 18, 2017.        Google Scholar

4. Bera, S., B. Liu, J. Wuenschell, J. Baltrus, D. Lau, B. Howard, M. Buric, B. Chorpening, and P. Ohodnicki, "Fabrication and evaluation of sapphire fiber cladding via magnesium aluminate spinel sol-gel based approaches," Fiber Optic Sensors and Applications XVI, Vol. 11000, 110000J, International Society for Optics and Photonics, May 14, 2019.        Google Scholar

5. Buric, M., B. Liu, J. Thapa, and B. Chorpening, "Single-crystal fiber structures for harsh environment applications (Rising Researcher Presentation)," Fiber Optic Sensors and Applications XV, Vol. 10654, 106540N, International Society for Optics and Photonics, May 14, 2018.        Google Scholar

6. Ohanian, III, O. J., A. J. Boulanger, S. D. Rountree, J. T. Jones, A. Birri, and T. E. Blue, "Single-mode sapphire fiber optic distributed sensing for extreme environments," Micro-and Nanotechnology Sensors, Systems, and Applications XI, Vol. 10982, 109822N, International Society for Optics and Photonics, May 13, 2019.        Google Scholar

7. Pfeiffenberger, N., G. Pickrell, K. Kokal, and A. Wang, "Sapphire photonic crystal fibers," Optical Engineering, Vol. 49, No. 9, 090501, Sep. 2010.
doi:10.1117/1.3483908        Google Scholar

8. Wang, T., J. Zhang, N. Zhang, S. Wang, B. Wu, N. Lin, P. Kusalik, Z. Jia, and X. Tao, "Single crystal fibers: Diversified functional crystal material," Advanced Fiber Materials, 1-25, 2019.        Google Scholar

9. Spratt, W., M. Huang, T. Murray, and H. Xia, "Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation," Journal of Applied Physics, Vol. 114, No. 20, 203501, Nov. 2, 2013.
doi:10.1063/1.4833240        Google Scholar

10. Shen, Y., L. Tong, and S. Chen, "Performance stability of the sapphire fiber and cladding under high temperature," Harsh Environment Sensors II, Vol. 3852, 134-142, International Society for Optics and Photonics, Dec. 8, 1999.        Google Scholar

11. Wilson, B. A., C. M. Petrie, and T. E. Blue, "High-temperature effects on the light transmission through sapphire optical fiber," Journal of the American Ceramic Society, Vol. 101, No. 8, 3452-3459, Aug. 2018.
doi:10.1111/jace.15515        Google Scholar

12. Chen, H., M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, "Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing," Applied Physics Reviews, Vol. 5, No. 1, 011102, Mar. 2018.
doi:10.1063/1.5010184        Google Scholar

13. Zhu, Y., Z. Huang, F. Shen, and A. Wang, "Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements," Optics Letters, Vol. 30, No. 7, 711, 2005.
doi:10.1364/OL.30.000711        Google Scholar

14. Wang, S.-C., C.-Y. Hsu, T.-T. Yang, D.-Y. Jheng, T.-I. Yang, T.-S. Ho, and S.-L. Huang, "Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser," Optics Letters, Vol. 41, No. 14, 3217, 2016.
doi:10.1364/OL.41.003217        Google Scholar

15. Djeu, N., , http://www.micromaterialsinc.com for pioneer commercial sapphire fiber provider.

16. Katyba, G. M., N. V. Chernomyrdin, I. N. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, "Step-index sapphire fiber and its application in a terahertz near-field microscopy," Proc. SPIE 11164, Millimetre Wave and Terahertz Sensors and Technology XII, 111640G, Oct. 18, 2019.        Google Scholar

17. Katyba, G. M., K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, and M. Skorobogatiy, "Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments," Advanced Optical Materials, 1800573, 2018.
doi:10.1002/adom.201800573        Google Scholar

18. Nubling, R. K. and J. A. Harrington, "Optical properties of single-crystal sapphire fibers," Applied Optics, Vol. 36, No. 24, 5934-5940, Aug. 20, 1997.
doi:10.1364/AO.36.005934        Google Scholar

19. Hill, C., D. Homa, Z. Yu, Y. Cheng, B. Liu, A. Wang, and G. Pickrell, "Single mode air-clad single crystal sapphire optical fiber," Applied Sciences, Vol. 7, No. 5, 473, May 2017.
doi:10.3390/app7050473        Google Scholar

20. Cheng, Y., C. Hill, B. Liu, Z. Yu, H. Xuan, D. Homa, A. Wang, and G. Pickrell, "Design and analysis oflarge-core single-mode windmill single crystal sapphire optical fiber," Optical Engineering, Vol. 55, No. 6, 066101, Jun. 1, 2016.
doi:10.1117/1.OE.55.6.066101        Google Scholar

21. Cheng, Y., C. Hill, B. Liu, Z. Yu, H. Xuan, D. Homa, A. Wang, and G. Pickrell, "Modal reduction in single crystal sapphire optical fiber," Optical Engineering, Vol. 54, No. 10, 107103, Oct. 2015.
doi:10.1117/1.OE.54.10.107103        Google Scholar

22. Rastogi, V. and K. S. Chiang, "Analysis of segmented-cladding fiber by the radial-effective-index method," JOSA B, Vol. 21, No. 2, 258-265, Feb. 1, 2004.
doi:10.1364/JOSAB.21.000258        Google Scholar

23. LaBelle, Jr., H. E., "EFG, the invention and application to sapphire growth," Journal of Crystal Growth, Vol. 50, No. 1, 8-17, Sep. 1, 1980.
doi:10.1016/0022-0248(80)90226-2        Google Scholar

24. Mesa, M. C., P. B. Oliete, V. M. Orera, J. Y. Pastor, A. Martın, and J. Llorca, "Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method," Journal of the European Ceramic Society, Vol. 31, No. 7, 1241-1250, Jun. 1, 2011.
doi:10.1016/j.jeurceramsoc.2010.05.004        Google Scholar

25. Andreeta, E. R., M. R. Andreeta, and A. C. Hernandes, "Laser heated pedestal growth of Al2O3/GdAlO3 eutectic fibers," Journal of Crystal Growth, Vol. 234, No. 4, 782-785, Feb. 1, 2002.
doi:10.1016/S0022-0248(01)01764-X        Google Scholar

26. Yoshikawa, A. and V. Chani, "Growth of optical crystals by the micro-pulling-down method," MRS Bulletin, Vol. 34, No. 4, 266-270, Apr. 2009.
doi:10.1557/mrs2009.77        Google Scholar

27. Cherin, A. H., An Introduction to Optical Fiber, McGraw-Hill Inc, 1987.

28. Jia, C., N. Wang, K. Li, and H. Jia, "Dual-cladding high birefringence photonic crystal fiber with elliptical-core," Applied Physics B, Vol. 125, No. 9, 158, Sep. 2019.
doi:10.1007/s00340-019-7273-1        Google Scholar

29. Burman, E., D. Elfverson, P. Hansbo, M. G. Larson, and K. Larsson, "Shape optimization using the cut finite element method," Comput. Methods Appl. Mech. Engrg., Vol. 328, 242-261, 2017.        Google Scholar

30. Hossain, M. B., A. A. Bulbul, M. A. Mukit, and E. Podder, "Analysis of optical properties for square, circular and hexagonal photonic crystal fiber," Optics and Photonics Journal, Vol. 7, No. 11, 235-243, Nov. 2017.
doi:10.4236/opj.2017.711021        Google Scholar

31. Biswas, S. K., M. I. Hasan, M. A. Awsaf, M. N. Rahman, M. I. Abdullah, and M. M. Mia, "Design and analysis of hexagonal photonic crystal fiber with ultra-high birefringent and large negative dispersion coefficient for the application of sensing and broadband dispersion compensating fiber," Asian Journal of Applied Science and Technology (AJAST), Vol. 1, No. 8, 147-151, Sep. 2017.        Google Scholar

32. Begum, F. and P. E. Abas, "Near infrared supercontinuum generation in silica based photonic crystal fiber," Progress In Electromagnetics Research C, Vol. 89, 149-159, 2019.
doi:10.2528/PIERC18100102        Google Scholar

33. Millo, A., I. Naeh, Y. Lavi, and A. Katzir, "Silver-halide segmented cladding fibers for the middle infrared," Applied Physics Letters, Vol. 88, No. 25, 251101, 2006.
doi:10.1063/1.2213958        Google Scholar

34. Dutta, A., "Mode analysis of different step index optical fibers at 1064 nm for high power fiber laser and amplifier," OSF Preprints, Oct. 18, 2019.        Google Scholar