1. Li, S., A. Liu, Z. Yang, L. Zhao, J. Wang, F. Liu, R. You, J. He, C. Wang, X. Yan, and P. Sun, "Design and preparation of the WO3 hollow spheres@ PANI conducting films for room temperature flexible NH3 sensing device," Sensors and Actuators B: Chemical, Vol. 289, 252-259, 2019.
doi:10.1016/j.snb.2019.03.073 Google Scholar
2. Dusablon, L., V. Fortin, T. Boilard, M. Bernier, P. Galarneau, F. Babin, and R. Vallee, "High resolution temperature sensor based on frequency beating between twin DFB fiber lasers," Optics Express, Vol. 28, No. 18, 26067-26075, 2020.
doi:10.1364/OE.395949 Google Scholar
3. Paixao, T., F. Araujo, and P. Antunes, "High-resolution strain and temperature Fabry-Perot interferometer sensor based on Vernier effect and produced by a femtosecond laser," Seventh European Workshop on Optical Fibre Sensors, Vol. 11199, 111992U, August 2019. Google Scholar
4. Chen, Y., B. Lu, Y. Chen, and X. Feng, "Ultra-thin and ultra-flexible temperature/strain sensor with CNT nanostrips," 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 70-73, August 2016.
doi:10.1109/EDSSC.2016.7785212 Google Scholar
5. Zhao, T., S. Lou, X. Wang, W. Zhang, and Y. Wang, "Simultaneous measurement of curvature, strain and temperature using a twin-core photonic crystal fiber-based sensor," Sensors, Vol. 18, No. 7, 2145, 2018.
doi:10.3390/s18072145 Google Scholar
6. Mumtaz, F., Y. Dai, and M. A. Ashraf, "Inter-cross de-modulated refractive index and temperature sensor by an etched Multi-core fiber of a MZI structure," Journal of Lightwave Technology, Vol. 38, No. 24, 6948-6953, December 15, 2020.
doi:10.1109/JLT.2020.3014857 Google Scholar
7. Zhao, Z., M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, "All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing," Applied Physics B, Vol. 112, No. 4, 491-497, 2013.
doi:10.1007/s00340-013-5634-8 Google Scholar
8. Lu, Y., C. Shen, C. Zhong, D. Chen, X. Dong, and J. Cai, "Refractive index and temperature sensor based on double-pass M-Z interferometer with an FBG," IEEE Photonics Technology Letters, Vol. 26, No. 11, 1124-1127, 2014.
doi:10.1109/LPT.2014.2315804 Google Scholar
9. Mumtaz, F., P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, "A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer," IEEE Sensors Journal, Vol. 20, No. 13, 7074-7081, July 2020.
doi:10.1109/JSEN.2020.2978533 Google Scholar
10. Kaur, G. and R. S. Kaler, "Nanohybrid optical sensor for simultaneous measurements of strain, temperature, and vibration for civil application," Micro & Nano Letters, Vol. 13, No. 1, 1-3, 2018.
doi:10.1049/mnl.2017.0216 Google Scholar
11. Tan, J., G. Feng, J. Liang, and S. Zhang, "Optical fiber temperature sensor based on dumbbell-shaped Mach-Zehnder interferometer," Optical Engineering, Vol. 57, No. 1, 017112, 2018.
doi:10.1117/1.OE.57.1.017112 Google Scholar
12. Wang, Q., H. Meng, X. Fan, M. Zhou, F. Liu, C. Liu, Z. Wei, F. Wang, and C. Tan, "Optical fiber temperature sensor based on a Mach-Zehnder interferometer with single-mode-thin-core-single-mode fiber structure," Review of Scientific Instruments, Vol. 91, No. 1, 015006, 2020.
doi:10.1063/1.5128485 Google Scholar
13. Huang, B., S. Xiong, Z. Chen, S. Zhu, H. Zhang, X. Huang, Y. Feng, S. Gao, S. Chen, W. Liu, and Z. Li, "In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement," IEEE Sensors Journal, Vol. 19, No. 14, 5632-5638, July 15, 2019.
doi:10.1109/JSEN.2019.2906243 Google Scholar
14. Li, W. W. and D. N. Wang, "Femtosecond laser inscribed straight waveguide in no-core fiber for in-line Mach-Zehnder interferometer construction," Optics Letters, Vol. 43, No. 14, 3405-3408, 2018.
doi:10.1364/OL.43.003405 Google Scholar
15. Yang, J., S. Wang, X. Chen, X. Zou, Y. Liu, R. Lin, Y. Wang, and Y. Chenl, "Optical fiber Mach-Zehnder interferometric strain sensor basedon concatenating two micro cavities fabricated by a femtosecond laser," 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE), 533-538, Brussels, Belgium, 2019. Google Scholar
16. Liang, H., W. Zhang, H. Wang, P. Geng, S. Zhang, S. Gao, C. Yang, and J. Li, "Fiber in-line Mach-Zehnder interferometer based on near-elliptical core photonic crystal fiber for temperature and strain sensing," Optics Letters, Vol. 38, No. 20, 4019-4022, 2013.
doi:10.1364/OL.38.004019 Google Scholar
17. Zhao, Y., X. Li, L. Cai, and Y. Zhang, "Measurement of RI and temperature using composite interferometer with hollow-core fiber and photonic crystal fiber," IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 11, 2631-2636, November 2016.
doi:10.1109/TIM.2016.2584390 Google Scholar
18. Han, B., Y. N. Zhang, E. Siyu, X. Wang, D. Yang, T. Wang, K. Lu, and F. Wang, "Simultaneous measurement of temperature and strain based on dual SPR effect in PCF," Optics & Laser Technology, Vol. 113, 46-51, 2019.
doi:10.1016/j.optlastec.2018.12.010 Google Scholar
19. Wang, G., Y. Lu, X. Yang, L. Duan, and J. Yao, "Square-lattice alcohol-filled photonic crystal fiber temperature sensor based on a Sagnac interferometer," Applied Optics, Vol. 58, No. 8, 2132-2136, 2019.
doi:10.1364/AO.58.002132 Google Scholar
20. Zhan, X., Y. Liu, M. Tang, L. Ma, R.Wang, L. Duan, L. Gan, C. Yang, W. Tong, S. Fu, and D. Liu, "Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination," Optics Express, Vol. 26, No. 12, 15332-15342, 2018.
doi:10.1364/OE.26.015332 Google Scholar
21. Wu, D., T. Zhu, K. S. Chiang, and M. Deng, "All single-mode fiber Mach-Zehnder interferometer based on two peanut-shape structures," Journal of Lightwave Technology, Vol. 30, No. 5, 805-810, 2012.
doi:10.1109/JLT.2011.2182498 Google Scholar
22. Wu, D., T. Zhu, D. W. Duan, K. S. Chiang, and M. Deng, "In-line single-mode fiber interferometers based on peanut-shape fiber structure," Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 84217N, November 7, 2012. Google Scholar
23. Sun, B., Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, and J. Zhou, "Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement," Optics Express, Vol. 23, No. 11, 14596-14602, 2015.
doi:10.1364/OE.23.014596 Google Scholar
24. Yu, F., P. Xue, X. Zhao, and J. Zheng, "Simultaneous measurement of refractive index and temperature based on a peanut-shape structure in-line fiber Mach-Zehnder interferometer," IEEE Sensors Journal, Vol. 19, No. 3, 950-955, 2018.
doi:10.1109/JSEN.2018.2880265 Google Scholar
25. Rao, Y. J., "In-fibre Bragg grating sensors," Meas. Sci. Technol., Vol. 8, 355-375, April 1997. Google Scholar
26. Wang, X., D. Chen, H. Li, G. Feng, and J. Yang, "In-line Mach-Zehnder interferometric sensor based on a seven-core optical fiber," IEEE Sensors Journal, Vol. 17, No. 1, 100-104, 2016.
doi:10.1109/JSEN.2016.2613018 Google Scholar
27. Li, L., L. Xia, Z. Xie, and D. Liu, "All-fiber Mach-Zehnder interferometers for sensing applications," Optics Express, Vol. 20, No. 10, 11109-11120, 2012.
doi:10.1364/OE.20.011109 Google Scholar
28. Xia, C., M. A. Eftekhar, R. A. Correa, J. E. Antonio-Lopez, A. Schulzgen, D. Christodoulides, and G. Li, "Supermodes in coupled multi-core waveguide structures," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 22, No. 2, 196-207, Art No. 4401212, March–April 2016 .
doi:10.1109/JSTQE.2015.2479158 Google Scholar
29. Lu, P., L. Men, K. Sooley, and Q. Chen, "Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature," Applied Physics Letters, Vol. 94, No. 13, 131110, 2009.
doi:10.1063/1.3115029 Google Scholar
30. Villatoro, J., O. Arrizabalaga, G. Durana, et al. "Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres," Sci. Rep., 7, article No. 4451, June 30, 2017. Google Scholar
31. Her, S.-C. and C.-Y. Tsai, "Strain measurement of fiber optic sensor surface bonding on host material," Transactions of Nonferrous Metals Society of China, Vol. 19, s143-s149, 2009.
doi:10.1016/S1003-6326(10)60262-2 Google Scholar
32. Frazao, O., S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, "Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber," Applied Optics, Vol. 47, No. 27, 4841-4848, 2008.
doi:10.1364/AO.47.004841 Google Scholar