Vol. 111
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-04-07
Finite Element Method Based Design and Analysis of a Low Torque Ripple Double-Stator Switched Reluctance Motor
By
Progress In Electromagnetics Research C, Vol. 111, 191-206, 2021
Abstract
Double-stator switched reluctance motors (DSSRMs) acquire attention because of their high torque/power generating capability compared to conventional and segmented rotor switched reluctance motors. One of the main limiting performance indices of such motors for industrial applications is its high torque ripple. This paper proposes a 12/10/12 pole DSSRM with an angular shift of half of the stroke angle between inner and outer stators. The respective phase windings of the inner and outer stators are parallelly excited with the same phase angle shift to reduce the torque ripple. Each rotor segment is constructed with a pair of half rotor segments that are isolated from each other through the insertion of a non-magnetic isolator between them. Firstly, the design hypothesis for a low torque ripple DSSRM has been presented; thereafter, some geometric modifications have been suggested and investigated to obtain a nearby response in the proposed DSSRM. The calculation of the width of the non-magnetic isolator, modification in the pole height of outer stator and modification in the arc angles of rotor segments/stator poles are discussed in detail. The effectiveness of the proposed motor is investigated through a 2D finite-element modelling and simulation in ANSYS/MAXWELL software. Simulation results show that the torque ripple is significantly reduced by 74.9% in the proposed DSSRM compared to the baseline DSSRM.
Citation
Tripurari Das Gupta, and Kalpana Chaudhary, "Finite Element Method Based Design and Analysis of a Low Torque Ripple Double-Stator Switched Reluctance Motor," Progress In Electromagnetics Research C, Vol. 111, 191-206, 2021.
doi:10.2528/PIERC21022001
References

1. Chiba, A., K. Kiyota, N. Hoshi, M. Takemoto, and S. Ogasawara, "Development of a rare-earth-free SR motor with high torque density for hybrid vehicles," IEEE Transactions on Energy Conversion, Vol. 30, No. 1, 175-182, March 2015.
doi:10.1109/TEC.2014.2343962

2. Gerada, D., A. Mebarki, N. L. Brown, C. Gerada, A. Cavagnino, and A. Boglietti, "High-speed electrical machines: Technologies, trends, and developments," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 2946-2959, June 2014.
doi:10.1109/TIE.2013.2286777

3. Ling, X., B. Li, L. Gong, Y. Huang, and C. Liu, "Simulation of switched reluctance motor drive system based on multi-physics modeling method," IEEE Access, Vol. 5, 26184-26189, 2017.
doi:10.1109/ACCESS.2017.2775340

4. Han, G., H. Chen, and G. Guan, "Low-cost SRM drive system with reduced current sensors and position sensors," IET Electric Power Applications, Vol. 13, No. 7, 853-862, July 2019.
doi:10.1049/iet-epa.2018.5209

5. Sun, Q., J. Wu, C. Gan, Y. Hu, N. Jin, and J. Guo, "A new phase current reconstruction scheme for four-phase SRM drives using improved converter topology without voltage penalty," IEEE Transactions on Industrial Electronics, Vol. 65, No. 1, 133-144, January 2018.
doi:10.1109/TIE.2017.2721898

6. Krishnan, R., S.-Y. Park, and K. Ha, "Theory and operation of a four-quadrant switched reluctance motor drive with a single controllable switch-the lowest cost four-quadrant brushless motor drive," IEEE Transactions on Industry Applications, Vol. 41, No. 4, 1047-1055, July–August 2005.
doi:10.1109/TIA.2005.851019

7. Gan, C., J. Wu, Q. Sun, W. Kong, H. Li, and Y. Hu, "A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications," IEEE Access, Vol. 6, 31430-31443, 2018.
doi:10.1109/ACCESS.2018.2837111

8. Mishra, A. K. and B. Singh, "Self-governing single-stage photovoltaic water pumping system with voltage balancing control for a four-phase SRM drive," IET Electric Power Applications, Vol. 14, No. 1, 119-130, January 2020.
doi:10.1049/iet-epa.2019.0360

9. Borg Bartolo, J., M. Degano, J. Espina, and C. Gerada, "Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application," IEEE Transactions on Industrial Electronics, Vol. 64, No. 2, 988-997, February 2017.
doi:10.1109/TIE.2016.2618342

10. Ho, C., J. Wang, K. Hu, and C. Liaw, "Development and operation control of a switched-reluctance motor driven flywheel," IEEE Transactions on Power Electronics, Vol. 34, No. 1, 526-537, January 2019.
doi:10.1109/TPEL.2018.2814790

11. Liang, J., L. Jian, G. Xu, and Z. Shao, "Analysis of electromagnetic behavior in switched reluctance motor for the application of integrated air conditioner on-board charger system," Progress In Electromagnetics Research, Vol. 124, 347-364, 2012.
doi:10.2528/PIER11112501

12. Isobe, K., K. Nakamura, and O. Ichinokura, "A consideration of high speed SR motor for electric power tools," Journal of the Magnetics Society of Japan, Vol. 38, No. 5, 194-198, 2014.
doi:10.3379/msjmag.1409R001

13. Mecrow, B. C., E. A. El-Kharashi, J. W. Finch, and A. G. Jack, "Segmental rotor switched reluctance motors with single-tooth windings," IEE Pro. — Electric Power Applications, Vol. 150, No. 5, 591-599, September 9, 2003.
doi:10.1049/ip-epa:20030366

14. Hayashi, H., K. Nakamura, A. Chiba, T. Fukao, K. Tungpimolrut, and D. Dorrell, "Efficiency improvements of switched reluctance motors with high-quality iron steel and enhanced conductor slot fill," IEEE Transactions on Energy Conversion, Vol. 24, No. 4, 819-825, December 2009.
doi:10.1109/TEC.2009.2025425

15. Li, Y., S. Ravi, and D. C. Aliprantis, "Tooth shape optimization of switched reluctance motors for improved torque profiles," Power & Energy Society General Meeting, 1-7, July 26–30, 2015.

16. Jing, L. and J. Cheng, "Research on torque ripple optimization of switched reluctance motor based on finite element method," Progress In Electromagnetics Research M, Vol. 74, 115-123, 2018.
doi:10.2528/PIERM18071104

17. Li, Q., A. Xu, L. Zhou, and C. Shang, "A deadbeat current control method for switched reluctance motor," Progress In Electromagnetics Research Letters, Vol. 91, 123-128, 2020.
doi:10.2528/PIERL20032103

18. Wang, S., Z. Hu, and X. Cui, "Research on novel direct instantaneous torque control strategy for switched reluctance motor," IEEE Access, Vol. 8, 66910-66916, 2020.
doi:10.1109/ACCESS.2020.2986393

19. Deng, X., B. Mecrow, H. Wu, and R. Martin, "Design and development of low torque ripple variable-speed drive system with six-phase switched reluctance motors," IEEE Transactions on Energy Conversion, Vol. 33, No. 1, 420-429, March 2018.
doi:10.1109/TEC.2017.2753286

20. Cao, X., J. Zhou, C. Liu, and Z. Deng, "Advanced control method for a single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement," IEEE Transactions on Energy Conversion, Vol. 32, No. 4, 1533-1543, December 2017.
doi:10.1109/TEC.2017.2719160

21. Bostanci, E., M. Moallem, A. Parsapour, and B. Fahimi, "Opportunities and challenges of switched reluctance motor drives for electric propulsion: A comparative study," IEEE Trans. Transport. Electrific., Vol. 3, No. 1, 58-75, March 2017.
doi:10.1109/TTE.2017.2649883

22. Chen, C., H. Guo, and G. Zhang, "SOSM direct torque and direct suspension force controlfor double stator bearingless switched reluctance motor," Progress In Electromagnetics Research C, Vol. 96, 179-192, 2019.
doi:10.2528/PIERC19071201

23. Sun, Q., J. Wu, C. Gan, C. Shi, and J. Guo, "DSSRM design with multiple pole arcs optimization for high torque and low torque ripple applications," IEEE Access, Vol. 6, 27166-27175, 2018.
doi:10.1109/ACCESS.2018.2834901

24. Madhavan, R. and B. G. Fernandes, "Performance improvement in the axial flux-segmented rotorswitched reluctance motor," IEEE Transactions on Energy Conversion, Vol. 29, No. 3, 641-651, September 2014.
doi:10.1109/TEC.2014.2314657

25. Kermanipour, M. J. and B. Ganji, "Modification in geometric structure of double-sided axial flux switched reluctance motor for mitigating torque ripple," Canadian Journal of Electrical and Computer Engineering, Vol. 38, No. 4, 318-322, 2015.
doi:10.1109/CJECE.2015.2465160

26. Gupta, T. D., K. Chaudhary, R. M. Elavarasan, R. K. Saket, I. Khan, and E. Hossain, "Design modification in single-tooth winding double-stator switched reluctance motor for torque ripple mitigation," IEEE Access, Vol. 9, 19078-19096, 2021.
doi:10.1109/ACCESS.2021.3052828

27. Asgar, M., E. Afjei, and H. Torkaman, "A new strategy for design and analysis of a double-stator switched reluctance motor: Electromagnetics, FEM, and experiment," IEEE Trans. Magn., Vol. 51, No. 12, 1-8, December 2015.
doi:10.1109/TMAG.2015.2465307

28. Asgar, M. and E. Afjei, "Radial force reduction in a new flat-type double-stator switched reluctance motor," IEEE Transactions on Energy Conversion, Vol. 31, No. 1, 141-149, March 2016.
doi:10.1109/TEC.2015.2465833

29. Gecer, B. and N. F. O. Serteller, "Understanding switched reluctance motor analysis using ANSYS/Maxwell," 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 446-449, Delft, Netherlands, 2020.

30. Miller, T. J. E., Switched Reluctance Motors and Their Control, CRC Press, London, U.K., 1993.

31. Mademlis, C. and I. Kioskeridis, "Performance optimisation in switched reluctance motor drives with online commutation angle control," IEEE Transactions on Energy Conversion, Vol. 18, No. 3, 448-457, September 2003.
doi:10.1109/TEC.2003.815854

32. Rekik, M., M. Besbes, C. Marchand, B. Multon, S. Loudot, and D. Lhotellier, "Improvement in the field-weakening performance of switched reluctance machine with continuous mode," IET Electric Power Applications, Vol. 1, No. 5, 785-792, September 2007.
doi:10.1049/iet-epa:20070069