1. Gupta, S. D. and M. C. Srivastava, "Design of frequency agile multidielectric microstrip antenna for airborne applications," International Journal of Microwave and Optical Technology (IJMOT), Vol. 5, 257-266, 2010. Google Scholar
2. Wu, J., J. Yu, and Q. Tao, "Design of a missile-borne conformal microstrip navigation antenna," MATEC Web of Conferences, Vol. 232, 04080, 2018.
doi:10.1051/matecconf/201823204080 Google Scholar
3. Jan, J. Y. and J. W. Su, "Bandwidth enhancement of a printed wide-slot antenna with a rotated slot," IEEE Transactions on Antennas and Propagation, Vol. 53, 2111-2114, 2005.
doi:10.1109/TAP.2005.848518 Google Scholar
4. Liu, Y. F., K. L. Lau, Q. Xue, and C. H. Chen, "Experimental studies of printed wide-slot antenna for wide-band applications," IEEE Antennas Wireless Propagation Letters, Vol. 3, 273-275, 2004.
doi:10.1109/LAWP.2004.837510 Google Scholar
5. Chen, W. S. and K. Y. Ku, "Band-rejected design of printed open slot antenna for WLAN/WiMAX operation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 1163-1169, 2008.
doi:10.1109/TAP.2008.919192 Google Scholar
6. Chattha, H. T., M. Hanif, X. Yang, Q. H. Abbasi, and I. E. Rana, "Frequency reconfigurable patch antenna for 4G LTE application," Progress In Electromagnetics Research M, Vol. 69, 1-13, 2018.
doi:10.2528/PIERM18022101 Google Scholar
7. Khattak, M. I., A. Sohail, U. Khan, Z. Ullah, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401 Google Scholar
8. Alieldin, A., Y. Huang, S. J. Boyes, and M. Stanley, "A reconfigurable broadband dual-mode dual-polarized antenna for sectorial/omnidirectional mobile base stations," Progress In Electromagnetics Research, Vol. 163, 1-13, 2018.
doi:10.2528/PIER18050206 Google Scholar
9. Alqadami, A. S. M., M. F. Jamlos, I. Islam, P. J. Soh, R. Mamat, K. A. Khairi, and A. Narbudowicz, "Multi-band antenna array based on double negative metamaterial for multi automotive applications," Progress In Electromagnetics Research, Vol. 159, 27-37, 2017.
doi:10.2528/PIER16091203 Google Scholar
10. Naik, K. K. and P. A. Vijaya Sri, "Design of hexadecagon circular patch antenna with DGS at Ku band for satellite communications," Progress In Electromagnetics Research M, Vol. 63, 163-173, 2018.
doi:10.2528/PIERM17092205 Google Scholar
11. Selvi, N. T., R. Pandeeswari, and P. N. T. Selvan, "An inset-fed rectangular microstrip patch antenna with multiple split ring resonator loading for WLAN and RF-ID applications," Progress In Electromagnetics Research C, Vol. 81, 41-52, 2018.
doi:10.2528/PIERC17110102 Google Scholar
12. Saroj, A. K., M. G. Siddiqui, M. Kumar, and J. Ansari, "Design of multiband quad-rectangular shaped microstrip antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 59, 213-221, 2017.
doi:10.2528/PIERM17071003 Google Scholar
13. Jabar, A. A. S. A. and D. K. Naji, "Design of miniaturized quad-band dual-arm spiral patch antenna for RFID, WLAN and WiMAX applications," Progress In Electromagnetics Research C, Vol. 91, 97-113, 2019.
doi:10.2528/PIERC19011706 Google Scholar
14. Khajepour, S., M. S. Ghaffarian, and G. Moradi, "Design of novel multiband folded printed quadrifilar helical antenna for GPS/WLAN applications," IEEE Electronics Letters, Vol. 53, No. 2, 58-60, 2017.
doi:10.1049/el.2016.3889 Google Scholar
15. Sun, X., G. Zeng, H.-C. Yang, Y. Li, X.-J. Liao, and L. Wang, "Design of an edge-fed quad-band slot antenna for GPS/WiMAX/WLAN applications," Progress In Electromagnetics Research Letters, Vol. 28, 111-120, 2012.
doi:10.2528/PIERL11080407 Google Scholar
16. Yu, J., Y. Sun, H. Zhu, F. Li, and Y. Fang, "Stacked-patch dual-band & dual-polarized antenna with broadband baluns for WiMAX & WLAN applications," Progress In Electromagnetics Research M, Vol. 68, 41-52, 2018.
doi:10.2528/PIERM18022501 Google Scholar
17. Liu, C. S., C. N. Chiu, and S. M. Deng, "A compact disc-slit monopole antenna for mobile devices," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 251-254, 2008. Google Scholar
18. Kumar, H. and G. Kumar, "A broadband planar modified quasi-Yagi using log-periodic antenna," Progress In Electromagnetics Research Letters, Vol. 73, 23-30, 2018.
doi:10.2528/PIERL17102005 Google Scholar
19. Dykaar, D. R., B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, "Log-periodic antennas for pulsed terahertz radiation," Appl. Phys. Lett., Vol. 59, 262, 1991.
doi:10.1063/1.105615 Google Scholar
20. Haraz, O. M., "Millimeter-wave printed dipole array antenna loaded with a low-cost dielectric lens for high-gain applications," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 41, No. 3, 225-244, 2020.
doi:10.1007/s10762-019-00654-5 Google Scholar
21. Haraz, O. M., A. R. Sebak, and S. Alshebeili, "Study the effect of using low-cost dielectric lenses with printed log-periodic dipole antennas for millimeter-wave applications," International Journal of Antennas and Propagation, Vol. 2015, 1-7, 2015.
doi:10.1155/2015/209430 Google Scholar
22. Haraz, O. M., S. A. Alshebeili, and A.-R. Sebak, "Low-cost high gain printed log-periodic dipole array antenna with dielectric lenses for V-band applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 6, 541-552, 2015.
doi:10.1049/iet-map.2014.0319 Google Scholar
23. Hasan, M. M., M. R. I. Faruque, and M. T. Islam, "Dual band metamaterial antenna for LTE/Bluetooth/WiMAX system," Scientific Reports (Nature), Vol. 8, No. 1240, 1-17, 2018. Google Scholar
24. Kushwaha, N. and R. Kumar, "An UWB fractal antenna with defected ground structure and Swastika shape electromagnetic band gap," Progress In Electromagnetics Research B, Vol. 52, 383-403, 2013.
doi:10.2528/PIERB13051509 Google Scholar
25. Agrawal, A., M. Misra, and A. Singh, "Oblique incidence and polarization insensitive multiband metamaterial absorber with quad paired concentric continuous ring resonators," Progress In Electromagnetics Research M, Vol. 60, 33-46, 2017.
doi:10.2528/PIERM17061302 Google Scholar
26. Milligan, T. A., Modern Antenna Design, 2nd Edition, John Wiley & Sons Inc., IEEE Press, New Jersey, 2005.
doi:10.1002/0471720615
27. Anguera, J., C. Punte, and C. Borja, "A procedure to design stacked microstrip patch antennas based on a simple network model," Microwave and Optical Technology Letters, Vol. 30, 149-151, 2001.
doi:10.1002/mop.1248 Google Scholar
28. Jain, S. K. and S. Jain, "Performance analysis of coaxial fed stacked patch antennas," Frequenz Journal of RF-Engineering and Telecommunication, Vol. 68, No. 1–2, 7-18, 2014. Google Scholar
29. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physics Review Letters], Vol. 84, No. 10, 4184-4187, 1999. Google Scholar
30. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114 Google Scholar