Vol. 113
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-05-18
Design, Optimization, and Analyses of Nano-Optical Couplers Consisting of Nanocubes to Construct Efficient Nanowire Transmission Systems
By
Progress In Electromagnetics Research C, Vol. 113, 13-27, 2021
Abstract
We present the design, optimization, and analyses of efficient couplers to construct nano-optical transmission systems involving nanowires. The couplers consist of optimized arrangements of nanocubes and are integrated into critical locations, such as nanowire inputs, corners, and junctions, to improve electromagnetic transmission in accordance with design purposes. Optimization and numerical analyses are performed by employing an efficient simulation environment based on a full-wave solver and genetic algorithms. Using the designed couplers, we obtain various configurations that enable efficient transmission and distribution of input powers to multiple outputs. With their favorable properties, the designed couplers and constructed systems can be further used to build larger nanowire networks.
Citation
Aşkın Altınoklu, and Özgür Ergül, "Design, Optimization, and Analyses of Nano-Optical Couplers Consisting of Nanocubes to Construct Efficient Nanowire Transmission Systems," Progress In Electromagnetics Research C, Vol. 113, 13-27, 2021.
doi:10.2528/PIERC21031402
References

1. Wang, X., C. J. Summers, and Z. L. Wang, "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays," Nano Lett., Vol. 4, No. 3, 423-426, Jan. 2004.
doi:10.1021/nl035102c        Google Scholar

2. Ditlbacher, H., A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett., Vol. 95, No. 257403, Dec. 2005.        Google Scholar

3. Sanders, A. W., D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett., Vol. 6, No. 8, 1822-1826, Jun. 2006.
doi:10.1021/nl052471v        Google Scholar

4. Akimov, A. V., A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, Vol. 450, No. 7168, 402-406, Nov. 2007.
doi:10.1038/nature06230        Google Scholar

5. Yao, J., Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science, Vol. 321, No. 5891, 930, Aug. 2008.
doi:10.1126/science.1157566        Google Scholar

6. Guo, X., M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, "Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits," Nano Lett., Vol. 9, No. 12, 4515-4519, 2009.
doi:10.1021/nl902860d        Google Scholar

7. Casse, B. D. F., W. T. Lu, Y. J. Huang, E. Gultepe, and L. Menon, "Super-resolution imaging using a three-dimensional metamaterials nanolens," Appl. Phys. Lett., Vol. 96, No. 023114, Jan. 2010.        Google Scholar

8. Wang, W., Q. Yang, F. Fan, H. Xu, and Z. L. Wang, "Light propagation in curved silver nanowire plasmonic waveguides," Nano Lett., Vol. 11, No. 4, 1603-1608, Mar. 2011.
doi:10.1021/nl104514m        Google Scholar

9. Bergin, S. M., Y. Chen, A. R. Rathmell, P. Charbonneau, Z. Y. Lib, and B. J. Wiley, "The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films," Nanoscale, Vol. 4, No. 6, 1996-2004, Feb. 2012.
doi:10.1039/c2nr30126a        Google Scholar

10. Huang, Y., Y. Fang, Z. Zhang, L. Zhu, and M. Sun, "Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering," Light: Science and Applications, Vol. 3, No. 199, Aug. 2014.        Google Scholar

11. Yılmaz, A., B. Karaosmanoglu, and O. Ergul, "Computational electromagnetic analysis of deformed nanowires using the multilevel fast multipole algorithm," Sci. Rep., Vol. 5, No. 8469, Feb. 2015.        Google Scholar

12. Satana, H. A., B. Karaosmanoglu, and O. Ergul, "A comparative study of nanowire arrays for maximum power transmission," Nanowires, K. Maaz, Ed., InTech, 2017.        Google Scholar

13. Altınoklu, A. and O. Ergul, "Nano-optical couplers for efficient power transmission along sharply bended nanowires," ACES J., Vol. 34, No. 2, 228-233, Feb. 2019.        Google Scholar

14. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

15. Ergul, O. and L. Gurel, "The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems," Wiley-IEEE, 2014.        Google Scholar

16. Karaosmanoglu, B., A. Yılmaz, U. M. Gur, and O. Ergul, "Solutions of plasmonic structures using the multilevel fast multipole algorithm," Int. J. RF Microwave Comput.-Aided. Eng., Vol. 26, No. 4, 335-341, May 2016.
doi:10.1002/mmce.20976        Google Scholar

17. Onol, C., B. Karaosmanoglu, and O. Ergul, "Efficient and accurate electromagnetic optimizations based on approximate forms of the multilevel fast multipole algorithm," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1113-1115, Apr. 2016.
doi:10.1109/LAWP.2015.2495237        Google Scholar

18. Altinoklu, A. and O. Ergul, "Computational design and analysis of efficient couplers for nano-optical links," 2019 PhotonIcs & Electromagnetics Research Symposium — Spring (PIERS-Spring), 91-99, Rome, Italy, Jun. 17–20, 2019.        Google Scholar

19. Altınoklu, A., G. Karaova, and O. Ergul, "Design and analysis of nano-optical networks consisting of nanowires and optimized couplers," Proc. Int. Conf. on Electromagnetics in Advanced Applications (ICEAA), 931-936, 2019.        Google Scholar

20. Karaosmanoglu, B., A. Yılmaz, and O. Ergul, "A comparative study of surface integral equations for accurate and efficient analysis of plasmonic structures," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3049-3057, Jun. 2017.
doi:10.1109/TAP.2017.2696954        Google Scholar

21. Onol, C., A. Ucuncu, and O. Ergul, "Efficient multilayer iterative solutions of electromagnetic problems using approximate forms of the multilevel fast multipole algorithm," IEEE Antennas Wireless Propag. Lett., Vol. 16, 3253-3256, 2017.
doi:10.1109/LAWP.2017.2771523        Google Scholar

22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, Mar. 1982.
doi:10.1109/TAP.1982.1142818        Google Scholar