Vol. 112
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-05-18
A Comparative Study of Some Novel Wideband Tulip Flower Monopole Antennas with Modified Patch and Ground Plane
By
Progress In Electromagnetics Research C, Vol. 112, 239-250, 2021
Abstract
Comparative study of some novel wideband Tulip Flower Monopole Antennas (TFMAs) is presented in this paper. To Improve the bandwidth and increase the gain, modification of the shape of the curves and slots in the patch and ground plane was carried out on the seven TFMAs. TFMA-A, TFMA-B, TFMA-C, and TFMA-D have dimensions of 50×50 mm2, while TFMA-E, TFMA-F, and TFMA-G have dimensions of 30×70 mm2. From the simulation result, TFMA-A operated from 2 GHz to more than 30 GHz with a return loss of 15 dB occupies most of its operating frequency. In the whole frequency work, the peak directivity performance in the order of superiority is obtained for TFMA-G, TFMA-F, TFMA-D, TFMA-E, TFMA-C, TFMA-B, and TFMA-A. The improvement of directivity is reached for TFMA-D of 5.03 if it is compared to TFMA-A at 24 GHz. TFMA-G obtains the peak of directivity of 10.148 dBi at 23 GHz. The impedance bandwidth and directivity of the antenna element change by varying the curvature, the shape, and the position of slot in the radiator and ground plane also the height of the microstrip feeding line and ground plane. The return losses of the TFMA-A and TFMA-E show good agreement between simulation and measurement results.
Citation
Nurhayati Nurhayati, Alexandre Manicoba de Oliveira, Warangkana Chaihongsa, Bagus Edy Sukoco, and Akbar Kurnia Saleh, "A Comparative Study of Some Novel Wideband Tulip Flower Monopole Antennas with Modified Patch and Ground Plane," Progress In Electromagnetics Research C, Vol. 112, 239-250, 2021.
doi:10.2528/PIERC21040707
References

1. Chen, H., X. Yang, Y. Z. Yin, S. T. Fan, and J. J. Wu, "Triband planar monopole antenna with compact radiator for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1440-1443, 2013.
doi:10.1109/LAWP.2013.2287312

2. Zehforoosh, Y. and T. Sedghi, "An improved CPW-fed printed UWB antenna with controllable band-notched functions," Journal of Communication Engineering, Vol. 5, No. 1, 38-49, 2016.

3. Liu, Y., P. Liu, Z. Meng, L. Wang, and Y. Li, "A planar printed nona-band loop-monopole reconfigurable antenna for mobile handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1575-1579, 2018.
doi:10.1109/LAWP.2018.2856459

4. Liu, C. S., C. N. Chiu, and S. M. Deng, "A compact disc-slit monopole antenna for mobile devices," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 251-254, 2008.

5. Pourahmadazar, J., C. Ghobadi, J. Nourinia, and H. Shirzad, "Multiband ring fractal monopole antenna for mobile devices," IEEE Antennas and Wireless Propagation Letters, Vol. 9, No. 1, 863-866, 2010.
doi:10.1109/LAWP.2010.2071372

6. Moosazadeh, M. and S. Kharkovsky, "Compact and small planar monopole antenna with symmetrical L- and U-shaped slots for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 388-391, 2014.
doi:10.1109/LAWP.2014.2306962

7. Zhu, Y., F. S. Zhang, C. Lin, Y. C. Jiao, and R. Zou, "Design of a compact dual-band printed monopole antenna for WLAN applications," 2010 9th Int. Symp. Antennas Propag. EM Theory, ISAPE 2010, 1-3, 2010.

8. Li, J., Y. Huang, G. Wen, L. Ma, W. Hu, and W. Gu, "A six-octave wideband and low profile log-period monopole endfire antenna," 2018 IEEE Antennas Propag. Soc. Int. Symp. Usn. Natl. Radio Sci. Meet. APSURSI 2018 — Proc, Vol. 2, 843-844, 2018.

9. Zhang, L., Y. C. Jiao, Y. Ding, B. Chen, and Z. Bin Weng, "CPW-fed broadband circularly polarized planar monopole antenna with improved ground-plane structure," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4824-4828, 2013.
doi:10.1109/TAP.2013.2267719

10. Dong, Y. and T. Itoh, "Planar ultra-wideband antennas in Ku- and K-band for the pattern or polarization diversity applications," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 2886-2895, 2012.
doi:10.1109/TAP.2012.2194680

11. Beaskoetxea, U., A. E. Torres-Garcia, and M. Beruete, "Ku-band low-profile asymmetric Bull’s-eye antenna with reduced sidelobes and monopole feeding," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 401-404, 2018.
doi:10.1109/LAWP.2018.2791660

12. Yeoh, W. S. and W. S. T. Rowe, "A UWB conical monopole antenna for multiservice wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 1085-1088, 2015.
doi:10.1109/LAWP.2015.2394295

13. Pascale, V., D. Maiarelli, L. D'Agristina, and N. Gatti, "Design and qualification of Ku-band-radiating chains for receiving active array antennas of flexible telecommunication satellites," Int. J. Microw. Wirel. Technol., Vol. 12, No. 6, 487-503, 2020.
doi:10.1017/S1759078720000227

14. Mei, L., L. Lang, N. Zhang, Y. Li, Y. Zhou, S. Chu, Y. Liu, and J. Yang, "A Ku-band conformal half-Yagi antenna for microwave communication," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), 1980-1986, Xiamen, China, 2019.
doi:10.1109/PIERS-Fall48861.2019.9021608

15. Oskouei, H. R. D., A. R. Dastkhosh, A. Mirtaheri, and M. Naseh, "A small cost-effective super ultra-wideband microstrip antenna with variable band-notch filtering and improved radiation pattern with 5g/IoT applications," Progress In Electromagnetics Research M, Vol. 83, 191-202, 2019.
doi:10.2528/PIERM19051802

16. Nurhayati, N., A. M. De Oliveira, J. F. Justo, E. Setijadi, B. E. Sukoco, and E. Endryansyah, "A compact monopole antenna for super wideband applications," Microw. Opt. Technol. Lett., Vol. 62, No. 2, 964-974, 2020.
doi:10.1002/mop.32127

17. Nurhayati, G. H., T. Fukusako, and E. Setijadi, "Mutual coupling reduction for a UWB coplanar vivaldi array by a truncated and corrugated slot," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2284-2288, 2018.
doi:10.1109/LAWP.2018.2873115

18. Wen, B. J., L. Peng, X. F. Li, K. S. Mo, X. Jiang, and S. M. Li, "A low-profile and wideband unidirectional antenna using bandwidth enhanced resonance-based reflector for fifth generation (5G) systems applications," IEEE Access, Vol. 07, 27352-27361, 2019.
doi:10.1109/ACCESS.2019.2901765

19. Yang, D., S. Liu, and D. Geng, "A miniaturized ultra-wideband Vivaldi antenna with low cross-polarization," IEEE Access, Vol. 05, 23352-23357, 2017.
doi:10.1109/ACCESS.2017.2766184

20. Zhou, Y., F. Zhu, S. Gao, Q. Luo, L.Wen, Q. Wang, X. Yang, Y. Geng, and Z. Cheng, "Tightly coupled array antennas for ultra-wideband wireless systems," IEEE Access, Vol. 06, 61851-61866, 2018.
doi:10.1109/ACCESS.2018.2873741

21. Wen, B. J., L. Peng, X. F. Li, K. S. Mo, X. Jiang, and S. M. Li, "A low-profile and wideband unidirectional antenna using bandwidth enhanced resonance-based reflector for fifth generation (5G) systems applications," IEEE Access, Vol. 07, 27352-27361, 2019.
doi:10.1109/ACCESS.2019.2901765

22. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Super wideband antenna with single-band suppression," Int. J. Microw. Wirel. Technol, Vol. 9, No. 1, 143-150, 2017.
doi:10.1017/S1759078715000963

23. Chen, K. R., C. Y. D. Sim, and J. S. Row, "A compact monopole antenna for super wideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 488-491, 2011.
doi:10.1109/LAWP.2011.2157071

24. Elhabchi, M., M. N. Srifi, and R. Touahni, "A novel CPW-fed semi-circular triangular antenna with modified ground plane for super ultra wide band (UWB) applications," ” Int. Symp. Adv. Electr. Commun. Technol. ISAECT 2018 — Proc, 1-5, 2019.

25. Seyfollahi, A. and J. Bornemann, "Printed-circuit monopole antenna for super-wideband applications," 12th European Conference on Antennas and Propagation (EuCAP), 2018, 1-5, 2018.

26. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications," IET Microwaves, Antennas Propag., Vol. 8, No. 1, 39-45, 2014.
doi:10.1049/iet-map.2013.0094

27. Haupt, R. L., "Antenna arrays," A Computational Approach, Wiley Online Library, 2010.