Vol. 113
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-06-11
Octa-Band Metamaterial Inspired Multiband Monopole Antenna for Wireless Application
By
Progress In Electromagnetics Research C, Vol. 113, 97-110, 2021
Abstract
In this paper, a Rectangular Monopole Antenna (RMPA) with offset microstrip feed is presented. The structure is fabricated on an FR4 substrate with a dimension of 28 x 32 x 1.6 mm3. The proposed structure achieves multiband operation by engraving 2 Complementary Split Ring Resonators (CSRRs) and a C-Shaped slot. Also, 2 Split Ring Resonators (SRRs) are printed on the adjacent sides of the radiating element. The parametric analysis is used to determine the optimum position of the feed and other critical parameters. The proposed structure operates at 2.25 GHz, 3.86 GHz, 4.60 GHz, 5.64 GHz, 5.86 GHz, 6.94 GHz,7.48 GHz, and 9.47 GHz. The permeability of the SRR and permittivity of the CSRR are extracted and presented. The proposed antenna is fabricated and measured. The measured results of S11, radiation pattern, and gain are on par with the simulated results. The proposed antenna's simulated surface current and efficiency are also presented to validate the performance. Simple structure, stable radiation patten, multiband operation, reasonable gain, and efficiency are the significant features of the proposed RMPA.
Citation
Samuel Prasad Jones Christydass, and Nagarajan Gunavathi, "Octa-Band Metamaterial Inspired Multiband Monopole Antenna for Wireless Application," Progress In Electromagnetics Research C, Vol. 113, 97-110, 2021.
doi:10.2528/PIERC21041102
References

1. Jhamb, K., L. Li, and K. Rambabu, "Novel-integrated patch antennas with multiband characteristics," IET Microwaves Antennas Propag., Vol. 5, 1393-1398, 2011.
doi:10.1049/iet-map.2010.0515

2. Moosazadeh, M. and S. Kharkovsky, "Compact and small planar monopole antenna with symmetrical L- and U-shaped slots for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 388-391, 2014.
doi:10.1109/LAWP.2014.2306962

3. Mopidevi, H., Y. Damgaci, D. Rodrigo, L. Jofre, and B. A. Cetiner, "A quad-band antenna for public safety applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1231-1234, 2014.
doi:10.1109/LAWP.2014.2332614

4. Alsath, M. G. N. and M. Kanagasabai, "Planar pentaband antenna for vehicular communication application," IEEE Antennas Wireless Propag. Lett., Vol. 13, 110-113, 2014.
doi:10.1109/LAWP.2013.2295631

5. Li, Y., Z. Zhang, Z. Feng, and M. F. Iskander, "Design of penta-band omnidirectional slot antenna with slender columnar structure," IEEE Trans. Antennas Propag., Vol. 62, 594-601, 2014.
doi:10.1109/TAP.2013.2292517

6. Abutarboush, H. F., R. Nilavalan, S. W. Cheung, and K. M. Nasr, "Compact printed multiband antenna with independent setting suitable for fixed and reconfigurable wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 60, 3867-3874, 2012.
doi:10.1109/TAP.2012.2201108

7. Boopathi Rani, R. and S. K. Pandey, "A parasitic hexagonal patch antenna surrounded by same shaped slot for WLAN, UWB applications with notch at vanet frequency band," Microwave and Optical Technology Letters, Vol. 58, 2996-3000, 2016.
doi:10.1002/mop.30204

8. Brar, R. S., K. Saurav, D. Sarkar, and K. V. Srivastava, "A triple band circular polarized monopole antenna for GNSS/UMTS/LTE," Microwave and Optical Technology Letters, Vol. 59, 298-303, 2017.
doi:10.1002/mop.30294

9. Rakesh Kumar, P., K. Satya Prasad, and A. Guruva Reddy, "Dual polygonal slit square patch with defected ground plane for tri band operation," Microwave and Optical Technology Letters, Vol. 59, 1071-1074, 2017.
doi:10.1002/mop.30457

10. Hosseini Varkiani, S. M. and M. Afsahi, "Grounded CPW multiband wearable antenna for MBAN and WLAN applications," Microwave and Optical Technology Letters, Vol. 60, 561-568, 2018.
doi:10.1002/mop.31012

11. Tuan Le, T., H. H. Tran, and H. C. Park, "A simple penta-band circularly polarized CPW-fed monopole-patch antenna covering six commercial application bands," Microwave and Optical Technology Letters, Vol. 60, 773-778, 2018.
doi:10.1002/mop.31046

12. Singh, V., B. Mishra, A. K. Dwivedi, and R. Singh, "Inverted L-notch loaded hexa band circular patch antenna for X, Ku/K band applications," Microwave and Optical Technology Letters, Vol. 60, 2081-2088, 2018.
doi:10.1002/mop.31296

13. Varma, R. and J. Ghosh, "Multiband proximity coupled microstrip antenna for wireless applications," Microwave and Optical Technology Letters, Vol. 60, 424-428, 2018.
doi:10.1002/mop.30985

14. Singh, V., B. Mishra, P. N. Tripathi, and R. Singh, "A compact quad-band microstrip antenna for S and C-band applications," Microwave and Optical Technology Letters, Vol. 58, 1365-1369, 2016.
doi:10.1002/mop.29799

15. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, IEEE Press, Wiley Publishing, Hoboken, NJ, 2006.

16. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials Fundamental Principles and Applications, IEEE Press, Wiley Publishing, 2005.
doi:10.1002/0471744751

17. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, IEEE Press, Wiley Publishing, 2005.
doi:10.1002/0471754323

18. Veselago, V. G., "Electrodynamics of substances with simultaneously negative electrical and magnetic properties," Sov., Phys., Vol. 10, 509-517, February 1968.
doi:10.1070/PU1968v010n04ABEH003699

19. Mehdipour, A., T. A. Denidni, and A.-R. Sebak, "Multiband miniaturized antenna loadedby ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, 555-562, 2014.
doi:10.1109/TAP.2013.2290791

20. Yoo, M. and S. Lim, "SRR and CSRR loaded ultra-wideband (UWB) antenna with tri-band notch capability," Journal of Electromagnetic Waves and Applications, Vol. 27, 2190-2197, 2013.
doi:10.1080/09205071.2013.837013

21. Xu, H.-X., G.-M. Wang, C.-X. Zhang, and Q. Peng, "Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion loss," AEU-International Journal of Electronics and Communications, Vol. 65, 901-905, 2011.
doi:10.1016/j.aeue.2011.02.012

22. Hamidreza, M.-T., A. Ramesh, and N. Mohsen, "A cavity-backed antenna loaded with compli-mentary split ring resonators," AEU-International Journal of Electronics and Communications, Vol. 70, 928-935, 2016.
doi:10.1016/j.aeue.2016.04.010

23. Phani Kumar, K. V. and S. S. Karthikeyan, "Wideband three section branch line coupler using triple open complementary split ring resonator and open stubs," AEU-International Journal of Electronics and Communications, Vol. 69, 1412-1416, 2016.
doi:10.1016/j.aeue.2015.06.003

24. Elavarasi, C. and T. Shanmuganantham, "“SRR loaded CPW-fed multiple band rose flower-shaped fractal antenna," Microwave and Optical Technology Letters, Vol. 58, 1720-1724, 2016.
doi:10.1002/mop.29886

25. Javid Asad, M., M. Farhan Shafique, and S. A. Khan, "Performance restoration of dielectric embedded antennas using omega like complementary split ring resonators," Microwave and Optical Technology Letters, Vol. 58, 357-362, 2017.
doi:10.1002/mop.30314

26. Falcone, F., J. Illescas, E. Jarauta, A. Estevez, and J. A. Marcotegui, "Analysis of stripline configurations loaded with complementary split ring resonators," Microwave and Optical Technology Letters, Vol. 55, 1250-1254, 2013.
doi:10.1002/mop.27569

27. Boopathi Rani, R. and S. K. Pandey, "Metamaterial-inspired printed UWB antenna for short range RADAR applications," Microwave and Optical Technology Letters, Vol. 59, 1600-1604, 2017.
doi:10.1002/mop.30590

28. Srivastava, K., A. Kumar, and B. K. Kanaujia, "Compact penta-band microstrip antenna," Microwave and Optical Technology Letters, Vol. 57, 836-883, 2016.
doi:10.1002/mop.29686

29. Singh, G., B. K. Kanaujia, V. K. Pandey, D. Gangwar, and S. Kumar, "Design of compact dual-band patch antenna loaded with D-shaped complementary split ring resonator," Journal of Electromagnetic Waves and Applications, Vol. 33, 2096-2111, 2019.
doi:10.1080/09205071.2019.1663274

30. Pandeeswari, R., "A compact non-bianisotropic complementary split ring resonator inspired microstrip triple band antenna," Progress In Electromagnetics Research C, Vol. 81, 115-124, 2018.
doi:10.2528/PIERC17103009

31. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Multiband monopole antenna loaded with complementary split ring resonator and C-shaped slots," AEU-International Journal of Electronics and Communications, Vol. 75, 8-14, 2017.
doi:10.1016/j.aeue.2017.03.001

32. Rajkumar, R. and U. K. Kommuri, "A triangular complementary split ring resonator based compact metamaterial antenna for multiband operation," Wireless Personal Communications, Vol. 101, 1075-1089, 2018.
doi:10.1007/s11277-018-5749-7

33. Dey, S., S. Mondal, and P. P. Sarkar, "Single feed circularly polarized antenna loaded with complementary split ring resonator (CSRR)," Progress In Electromagnetics Research M, Vol. 78, 175-184, 2019.
doi:10.2528/PIERM18090503

34. Pandeeswari, R., "Complimentary split ring resonator inspired meandered CPW-fed monopole antenna for multiband operation," Progress In Electromagnetics Research C, Vol. 80, 13-20, 2018.
doi:10.2528/PIERC17101402

35. Ali, T., M. M. Khaleeq, and R. C. Biradar, "A multiband reconfigurable slot antenna for wireless applications," AEU-International Journal of Electronics and Communications, Vol. 84, 273-280, 2018.
doi:10.1016/j.aeue.2017.11.033

36. Li, Y. J., Z. Y. Lu, L. S. Yang, and , "CPW-fed slot antenna for medical wearable applications," IEEE Access, Vol. 7, 42107-42112, 2019.
doi:10.1109/ACCESS.2019.2908199

37. Kumar, A., M. M. Sharma, and R. P. Yadav, "Dual wideband circular polarized CPW-fed strip and slots loaded compact square slot antenna for wireless and satellite applications," AEU-International Journal of Electronics and Communications, Vol. 108, 181-188, 2019.
doi:10.1016/j.aeue.2019.06.027

38. Fang, X., G. Wen, D. Inserra, Y. Huang, and J. Li, "Compact wideband CPW-fed meandered-slot antenna with slotted Y-shaped central element for Wi-Fi, WiMAX, and 5G applications," IEEE Trans. Antennas Propag., Vol. 66, 7395-7399, 2018.
doi:10.1109/TAP.2018.2869254

39. Daniel, R. S., "Broadband μ-negative antenna using ELC unit cell," AEU-International Journal of Electronics and Communications, Vol. 1, 2020.

40. Selvi, N. T., P. T. Selvan, S. P. Babu, and R. Pandeeswari, "Multiband metamaterial-inspired antenna using split ring resonator," Computers & Electrical Engineering, Vol. 1, 2020.

41. Rajak, N., N. Chattoraj, and R. Mark, "Metamaterial cell inspired high gain multiband antenna for wireless applications," AEU-International Journal of Electronics and Communications, Vol. 1, 23-30, 2019.
doi:10.1016/j.aeue.2019.07.003

42. Saraswat, R. K. and M. Kumar, "A metamaterial hepta-band antenna for wireless applications with specific absorption rate reduction," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, 2019.

43. Anand, S. and P. Prashalee, "High gain compact multiband cavity-backed SIW and metamaterial unit cells with CPW feed antenna for S, and Ku band applications," Wireless Personal Communications, Vol. 26, 1-4, 2021.

44. Daniel, R. S. and R. Selvaraj, "A low-profile spilt ring monopole antenna loaded with hexagonal split ring resonator for RFID applications," Progress In Electromagnetics Research M, Vol. 92, 169-179, 2020.
doi:10.2528/PIERM20030702

45. Rothwell, E. J., J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706