1. "5 critical 5G network deployment challenges --- Infovista,", https://www.infovista.com/blog/5g-network-deployment-challenges (consulté le févr. 13, 2021).
doi:10.1109/ISCAS.2014.6865398 Google Scholar
2. "5G-PPP,", https://5g-ppp.eu/(consulté le févr. 13, 2021).
doi:10.1093/ietcom/e90-b.12.3514 Google Scholar
3. R. & S. International "R&S®Cloud4Testing: 5G signal analysis,", https://www.rohde-schwarz.com/fr/produits/test-et-mesure/analyseurs-de-signaux-et-de-spectres/digital-products/cloud4testing/cloud4testing-5g-application-package 253876.html (consulté le févr.13, 2021).
doi:10.1109/TCSI.2007.900181 Google Scholar
4. Agrawal, G., S. Aniruddhan, and R. K. Ganti, "Multi-band RF time delay element based on frequency translation," 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 1368-1371, 2014.
doi:10.1109/ACCESS.2020.2977100 Google Scholar
5. Myoung, S.-S., B.-S. Kwon, Y.-H. Kim, and J.-G. Yook, "Effect of group delay in RF BPF on impulse radio systems," IEICE Trans. Commun., Vol. 90, No. 12, 3514-3522, 2007.
doi:10.1016/j.aeue.2020.153297 Google Scholar
6. Groenewold, G., "Noise and group delay in active filters," IEEE Trans. Circuits Syst. Regul. Pap., Vol. 54, No. 7, 1471-1480, 2007.
doi:10.1109/TCSI.2011.2107251 Google Scholar
7. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336-43343, 2020.
doi:10.1109/TMTT.2014.2320220 Google Scholar
8. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," AEU-Int. J. Electron. Commun., Vol. 123, 153297, 2020.
doi:10.1049/el.2010.1797 Google Scholar
9. Kandic, M. and G. E. Bridges, "Asymptotic limits of negative group delay in active resonator-based distributed circuits," IEEE Trans. Circuits Syst. Regul. Pap., Vol. 58, No. 8, 1727-1735, 2011.
doi:10.1049/iet-map.2015.0597 Google Scholar
10. Wu, C.-T. M. and T. Itoh, "Maximally flat negative group-delay circuit: A microwave transversal filter approach," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 6, 1330-1342, 2014.
doi:10.1109/TCSI.2007.910538 Google Scholar
11. Markley, L. and G. V. Eleftheriades, "Quad-band negative-refractive-index transmission-line unit cell with reduced group delay," Electron. Lett., Vol. 46, No. 17, 1206-1208, 2010. Google Scholar
12. Barroso, J. J., J. E. B. Oliveira, O. L. Coutinho, and U. C. Hasar, "Negative group velocity in resistive lossy left-handed transmission lines," IET Microwaves, Antennas & Propagation, Vol. 10, No. 7, 808-815, May 2016.
doi:10.1109/MMM.2020.3035862 Google Scholar
13. Awwad, F. R., M. Nekili, V. Ramachandran, and M. Sawan, "On modeling of parallel repeater-insertion methodologies for SoC interconnects," IEEE Trans. Circuits Syst. Regul. Pap., Vol. 55, No. 1, 322-335, 2008. Google Scholar
14. Ravelo, B., "Recovery of microwave-digital signal integrity with NGD circuits," Photon Optoelectron, Vol. 2, No. 1, 8-16, 2013.
doi:10.1017/S1759078717001192 Google Scholar
15. Xiao, J.-K., Q.-F. Wang, and J.-G. Ma, "Negative group delay circuits and applications: Feedforward amplifiers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16-32, Feb. 2021.
doi:10.1149/1945-7111/abc656 Google Scholar
16. Abdulkarim, Y. I., H. N. Awl, F. F. Muhammadsharif, M. Karaaslan, R. H. Mahmud, S. O. Hasan, Ö. Işık, H. Luo, and S. Huang, "A low-profile antenna based on single-layer metasurface for Ku-band applications," International Journal of Antennas and Propagation, Vol. 2020, Article ID 8813951, 8 pages, 2020.
doi:10.1149/2.1491912jes Google Scholar
17. Akgol, O., O. Altintas, E. Unal, et al. "Linear to left-and right-hand circular polarization conversion by using a metasurface structure," Int. Journal of Microwave and Wireless Technologies, Vol. 10, No. 1, 133-138, 2008.
doi:10.1109/JSEN.2017.2747764 Google Scholar
18. Altıntaş, O., M. Aksoy, E. Ünal, M. Karaaslan, and C. Sabah, "Operating frequency reconfiguration study for a split ring resonator based microfluidic sensor," J. Electrochem. Soc., Vol. 167, No. 14, 147512, Nov. 2020.
doi:10.1109/TAP.2015.2408364 Google Scholar
19. Bakır, M., S. Dalgaç, M. Karaaslan, F. Karadag, O. Akgol, E. Unal, T. Depçi, and C. Sabah, "A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial," J. Electrochem. Soc., Vol. 166, B1044-B1052, 2019.
doi:10.23919/EuMC.2019.8910773 Google Scholar
20. Velez, P., L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martin, "Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids," IEEE Sens. J., Vol. 17, 6589-6598, 2017.
doi:10.1109/LMWC.2017.2745487 Google Scholar
21. Mirzaei, H. and G. V. Eleftheriades, "Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-foster elements synthesized by negative-group-delay networks," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 1997-2010, May 2015.
doi:10.1016/j.aeue.2013.09.003 Google Scholar
22. Zhu, M. and C.-T. M.Wu, "Reconfigurable series feed network for squint-free antenna beamforming using distributed amplifier-based negative group delay circuit," 2019 49th European Microwave Conference (EuMC), 256-259, 2019.
doi:10.1051/epjap/2012110374 Google Scholar
23. Zhang, T., R. Xu, and C.-T. M. Wu, "Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 10, 921-923, 2017.
doi:10.1002/cta.1902 Google Scholar
24. Ravelo, B., "Distributed NGD active circuit for RF-microwave communication," AEU-Int. J. Electron. Commun., Vol. 68, No. 4, 282-290, 2014.
doi:10.23919/URSIRSB.2017.8409424 Google Scholar
25. Ravelo, B., "Delay modeling of high-speed distributed interconnect for the signal integrity prediction," Eur. Phys. J. Appl. Phys., Vol. 57, No. 3, 31002, 2012.
doi:10.1109/APMC.2013.6695137 Google Scholar
26. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," Int. J. Circuit Theory Appl., Vol. 42, No. 10, 1016-1032, 2014.
doi:10.1109/LMWC.2017.2711572 Google Scholar
27. Ravelo, B., "On low-pass, high-pass, bandpass, and stop-band NGD RF passive circuits," URSI Radio Sci. Bull., Vol. 2017, No. 363, 10-27, 2017.
doi:10.1109/LMWC.2014.2322445 Google Scholar
28. Wu, C.-T. M., S. Gharavi, and T. Itoh, "Negative group delay circuit based on a multisection asymmetrical directional coupler," 2013 Asia-Pacic Microwave Conference Proceedings (APMC), 333-334, 2013.
doi:10.1109/TMTT.2014.2345352 Google Scholar
29. Qiu, L.-F., L.-S. Wu, W.-Y. Yin, and J.-F. Mao, "Absorptive bandstop filter with prescribed negative group delay and bandwidth," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 7, 639-641, Jul. 2017.
doi:10.1049/iet-map.2014.0351 Google Scholar
30. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 8, 521-523, 2014.
doi:10.1109/ACCESS.2017.2761890 Google Scholar
31. Chaudhary, G. and Y. Jeong, "Low signal-attenuation negative group-delay network topologies using coupled lines," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 10, 2316-2324, 2014.
doi:10.1049/el.2017.0328 Google Scholar
32. Chaudhary, G. and Y. Jeong, "Transmission-type negative group delay networks using coupled line doublet structure," IET Microw. Antennas Propag., Vol. 9, No. 8, 748-754, 2015.
doi:10.13164/re.2018.1070 Google Scholar
33. Shao, T., Z. Wang, S. Fang, H. Liu, and S. Fu, "A compact transmission-line self-matched negative group delay microwave circuit," IEEE Access, Vol. 5, 22836-22843, 2017, doi: 10.1109/ACCESS.2017.2761890. Google Scholar
34. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electron. Lett., Vol. 53, No. 7, 476-478, févr, 2017, doi: 10.1049/el.2017.0328. Google Scholar
35. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radioengineering, Vol. 27, No. 4, 1070-1076, Sept. 2018, doi: 10.13164/re.2018.1070. Google Scholar
36. Ravelo, B. and F. Wan, "NGD synthesizer with feedback hybrid coupler," 2019 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, Sept. 2019, doi: 10.23919/RA-DIO46463.2019.8968893.
doi:10.1109/TMTT.2014.2320220 Google Scholar
37. Ravelo, B., "Hybrid coupler-based NGD circuit," Negat. Group Delay Devices Concepts Appl., 147-172, Nov. 2018, doi: 10.1049/PBCS043E_ch5. Google Scholar
38. Wu, C. M., S. Gharavi, and T. Itoh, "Negative group delay circuit based on a multisection asymmetrical directional coupler," 2013 Asia-Pacic Microwave Conference Proceedings (APMC), 333-334, Nov. 2013, doi: 10.1109/APMC.2013.6695137.
doi:10.1109/22.275248 Google Scholar
39. Wu, C. M. and T. Itoh, "Maximally flat negative group-delay circuit: A microwave transversal filter approach," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 6, 1330-1342, Jun. 2014, doi: 10.1109/TMTT.2014.2320220.
doi:10.1109/TMTT.2016.2604316 Google Scholar
40. Hammerstad, E. and O. Jensen, "Accurate models for microstrip computer-aided design," 1980 IEEE MTT-S International Microwave Symposium Digest, 407-409, 1980. Google Scholar
41. Frickey, D. A., "Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 2, 205-211, 1994. Google Scholar
42. Ravelo, B., "Theory of coupled line coupler-based negative group delay microwave circuit," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 11, 3604-3611, Nov. 2016, doi: 10.1109/TMTT.2016.2604316. Google Scholar