Vol. 115
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-09-13
Design and Modelling of Ladder-Shape Topology Generating Bandpass NGD Function
By
Progress In Electromagnetics Research C, Vol. 115, 145-160, 2021
Abstract
This paper introduces a model and design of an innovative bandpass (BP) negative group delay (NGD) distributed circuit. The passive circuit topology under study is constituted by fully distributed elements without lumped components. The NGD passive structure is implemented as a ladder shape topology composed of distributed transmission line (TL) elements. The S-matrix model is established from TL-based equivalent Z-matrix operations of TLs with respect to the ladder geometry. As a proof of concept, a two-cell ladder prototype is designed in microstrip technology, which is simulated, fabricated, and tested. The calculated and simulated measurements are in very good agreement with the validation of BP NGD behaviour. NGD value is better than -3 ns with centre frequency between 3.56 and 3.68 GHz over more than 30 MHz NGD bandwidth being observed. The circuit operates under insertion loss better than 5 dB and reflection loss better than 8 dB. This innovative BP NGD passive circuit can be useful in the RF and microwave engineering area, for example, to reduce the signal propagation delay in the upcoming and 5G telecommunication systems.
Citation
Samuel Ngoho, Yves Constant Mombo Boussougou, Syed Samar Yazdani, Yuandan Dong, Nour Mohammad Murad, Sebastien Lallechere, Wenceslas Rahajandraibe, and Blaise Ravelo, "Design and Modelling of Ladder-Shape Topology Generating Bandpass NGD Function," Progress In Electromagnetics Research C, Vol. 115, 145-160, 2021.
doi:10.2528/PIERC21051603
References

1. "5 critical 5G network deployment challenges --- Infovista,", https://www.infovista.com/blog/5g-network-deployment-challenges (consulté le févr. 13, 2021).
doi:10.1109/ISCAS.2014.6865398

2. "5G-PPP,", https://5g-ppp.eu/(consulté le févr. 13, 2021).
doi:10.1093/ietcom/e90-b.12.3514

3. R. & S. International "R&S®Cloud4Testing: 5G signal analysis,", https://www.rohde-schwarz.com/fr/produits/test-et-mesure/analyseurs-de-signaux-et-de-spectres/digital-products/cloud4testing/cloud4testing-5g-application-package 253876.html (consulté le févr.13, 2021).
doi:10.1109/TCSI.2007.900181

4. Agrawal, G., S. Aniruddhan, and R. K. Ganti, "Multi-band RF time delay element based on frequency translation," 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 1368-1371, 2014.
doi:10.1109/ACCESS.2020.2977100

5. Myoung, S.-S., B.-S. Kwon, Y.-H. Kim, and J.-G. Yook, "Effect of group delay in RF BPF on impulse radio systems," IEICE Trans. Commun., Vol. 90, No. 12, 3514-3522, 2007.
doi:10.1016/j.aeue.2020.153297

6. Groenewold, G., "Noise and group delay in active filters," IEEE Trans. Circuits Syst. Regul. Pap., Vol. 54, No. 7, 1471-1480, 2007.
doi:10.1109/TCSI.2011.2107251

7. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336-43343, 2020.
doi:10.1109/TMTT.2014.2320220

8. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," AEU-Int. J. Electron. Commun., Vol. 123, 153297, 2020.
doi:10.1049/el.2010.1797

9. Kandic, M. and G. E. Bridges, "Asymptotic limits of negative group delay in active resonator-based distributed circuits," IEEE Trans. Circuits Syst. Regul. Pap., Vol. 58, No. 8, 1727-1735, 2011.
doi:10.1049/iet-map.2015.0597

10. Wu, C.-T. M. and T. Itoh, "Maximally flat negative group-delay circuit: A microwave transversal filter approach," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 6, 1330-1342, 2014.
doi:10.1109/TCSI.2007.910538

11. Markley, L. and G. V. Eleftheriades, "Quad-band negative-refractive-index transmission-line unit cell with reduced group delay," Electron. Lett., Vol. 46, No. 17, 1206-1208, 2010.

12. Barroso, J. J., J. E. B. Oliveira, O. L. Coutinho, and U. C. Hasar, "Negative group velocity in resistive lossy left-handed transmission lines," IET Microwaves, Antennas & Propagation, Vol. 10, No. 7, 808-815, May 2016.
doi:10.1109/MMM.2020.3035862

13. Awwad, F. R., M. Nekili, V. Ramachandran, and M. Sawan, "On modeling of parallel repeater-insertion methodologies for SoC interconnects," IEEE Trans. Circuits Syst. Regul. Pap., Vol. 55, No. 1, 322-335, 2008.

14. Ravelo, B., "Recovery of microwave-digital signal integrity with NGD circuits," Photon Optoelectron, Vol. 2, No. 1, 8-16, 2013.
doi:10.1017/S1759078717001192

15. Xiao, J.-K., Q.-F. Wang, and J.-G. Ma, "Negative group delay circuits and applications: Feedforward amplifiers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16-32, Feb. 2021.
doi:10.1149/1945-7111/abc656

16. Abdulkarim, Y. I., H. N. Awl, F. F. Muhammadsharif, M. Karaaslan, R. H. Mahmud, S. O. Hasan, Ö. Işık, H. Luo, and S. Huang, "A low-profile antenna based on single-layer metasurface for Ku-band applications," International Journal of Antennas and Propagation, Vol. 2020, Article ID 8813951, 8 pages, 2020.
doi:10.1149/2.1491912jes

17. Akgol, O., O. Altintas, E. Unal, et al. "Linear to left-and right-hand circular polarization conversion by using a metasurface structure," Int. Journal of Microwave and Wireless Technologies, Vol. 10, No. 1, 133-138, 2008.
doi:10.1109/JSEN.2017.2747764

18. Altıntaş, O., M. Aksoy, E. Ünal, M. Karaaslan, and C. Sabah, "Operating frequency reconfiguration study for a split ring resonator based microfluidic sensor," J. Electrochem. Soc., Vol. 167, No. 14, 147512, Nov. 2020.
doi:10.1109/TAP.2015.2408364

19. Bakır, M., S. Dalgaç, M. Karaaslan, F. Karadag, O. Akgol, E. Unal, T. Depçi, and C. Sabah, "A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial," J. Electrochem. Soc., Vol. 166, B1044-B1052, 2019.
doi:10.23919/EuMC.2019.8910773

20. Velez, P., L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martin, "Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids," IEEE Sens. J., Vol. 17, 6589-6598, 2017.
doi:10.1109/LMWC.2017.2745487

21. Mirzaei, H. and G. V. Eleftheriades, "Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-foster elements synthesized by negative-group-delay networks," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 1997-2010, May 2015.
doi:10.1016/j.aeue.2013.09.003

22. Zhu, M. and C.-T. M.Wu, "Reconfigurable series feed network for squint-free antenna beamforming using distributed amplifier-based negative group delay circuit," 2019 49th European Microwave Conference (EuMC), 256-259, 2019.
doi:10.1051/epjap/2012110374

23. Zhang, T., R. Xu, and C.-T. M. Wu, "Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 10, 921-923, 2017.
doi:10.1002/cta.1902

24. Ravelo, B., "Distributed NGD active circuit for RF-microwave communication," AEU-Int. J. Electron. Commun., Vol. 68, No. 4, 282-290, 2014.
doi:10.23919/URSIRSB.2017.8409424

25. Ravelo, B., "Delay modeling of high-speed distributed interconnect for the signal integrity prediction," Eur. Phys. J. Appl. Phys., Vol. 57, No. 3, 31002, 2012.
doi:10.1109/APMC.2013.6695137

26. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," Int. J. Circuit Theory Appl., Vol. 42, No. 10, 1016-1032, 2014.
doi:10.1109/LMWC.2017.2711572

27. Ravelo, B., "On low-pass, high-pass, bandpass, and stop-band NGD RF passive circuits," URSI Radio Sci. Bull., Vol. 2017, No. 363, 10-27, 2017.
doi:10.1109/LMWC.2014.2322445

28. Wu, C.-T. M., S. Gharavi, and T. Itoh, "Negative group delay circuit based on a multisection asymmetrical directional coupler," 2013 Asia-Paci c Microwave Conference Proceedings (APMC), 333-334, 2013.
doi:10.1109/TMTT.2014.2345352

29. Qiu, L.-F., L.-S. Wu, W.-Y. Yin, and J.-F. Mao, "Absorptive bandstop filter with prescribed negative group delay and bandwidth," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 7, 639-641, Jul. 2017.
doi:10.1049/iet-map.2014.0351

30. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 8, 521-523, 2014.
doi:10.1109/ACCESS.2017.2761890

31. Chaudhary, G. and Y. Jeong, "Low signal-attenuation negative group-delay network topologies using coupled lines," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 10, 2316-2324, 2014.
doi:10.1049/el.2017.0328

32. Chaudhary, G. and Y. Jeong, "Transmission-type negative group delay networks using coupled line doublet structure," IET Microw. Antennas Propag., Vol. 9, No. 8, 748-754, 2015.
doi:10.13164/re.2018.1070

33. Shao, T., Z. Wang, S. Fang, H. Liu, and S. Fu, "A compact transmission-line self-matched negative group delay microwave circuit," IEEE Access, Vol. 5, 22836-22843, 2017, doi: 10.1109/ACCESS.2017.2761890.

34. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electron. Lett., Vol. 53, No. 7, 476-478, févr, 2017, doi: 10.1049/el.2017.0328.

35. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radioengineering, Vol. 27, No. 4, 1070-1076, Sept. 2018, doi: 10.13164/re.2018.1070.

36. Ravelo, B. and F. Wan, "NGD synthesizer with feedback hybrid coupler," 2019 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, Sept. 2019, doi: 10.23919/RA-DIO46463.2019.8968893.
doi:10.1109/TMTT.2014.2320220

37. Ravelo, B., "Hybrid coupler-based NGD circuit," Negat. Group Delay Devices Concepts Appl., 147-172, Nov. 2018, doi: 10.1049/PBCS043E_ch5.

38. Wu, C. M., S. Gharavi, and T. Itoh, "Negative group delay circuit based on a multisection asymmetrical directional coupler," 2013 Asia-Paci c Microwave Conference Proceedings (APMC), 333-334, Nov. 2013, doi: 10.1109/APMC.2013.6695137.
doi:10.1109/22.275248

39. Wu, C. M. and T. Itoh, "Maximally flat negative group-delay circuit: A microwave transversal filter approach," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 6, 1330-1342, Jun. 2014, doi: 10.1109/TMTT.2014.2320220.
doi:10.1109/TMTT.2016.2604316

40. Hammerstad, E. and O. Jensen, "Accurate models for microstrip computer-aided design," 1980 IEEE MTT-S International Microwave Symposium Digest, 407-409, 1980.

41. Frickey, D. A., "Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 2, 205-211, 1994.

42. Ravelo, B., "Theory of coupled line coupler-based negative group delay microwave circuit," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 11, 3604-3611, Nov. 2016, doi: 10.1109/TMTT.2016.2604316.