1. O'Loughlin, D., M. O'Halloran, M. Glavin, J. Martin, E. Jines, and M. A. Elahi, "Microwave breast imaging: Clinical advances and remaining challenges," IEEE Transactions on Biomedical Engineering, Vol. 65, No. 11, 2580-2590, Nov. 2018.
doi:10.1109/TBME.2018.2809541 Google Scholar
2. O'Halloran, M., M. Glavin, and E. Jones, "Performance and robustness of a multistatic MIST beamforming algorithm for breast cancer detection," Progress In Electromagnetics Research, Vol. 105, 403-424, 2010.
doi:10.2528/PIER10011205 Google Scholar
3. Winters, D. W., J. D. Shea, E. L. Madsen, G. R. Frank, B. D. van Veen, and S. C. Hagness, "Estimating the breast surface using UWB microwave monos," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 247-256, 2008.
doi:10.1109/TBME.2007.901028 Google Scholar
4. Curtis, C. and E. Fear, "Beamforming in the frequency domain with applications to microwave breast imaging," IEEE 8th European Conference on Antennas and Propagation (EuCAP)), 72-75, The Hague, Netherlands, 2014. Google Scholar
5. Curtis, C., "Factors affecting image quality in near-field ultra-wideband radar imaging for biomedical applications,", University of Calgary, Calgary, 2015. Google Scholar
6. Bond, E. J., X. Li, S. C. Hagness, and B. D. van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 8, No. 51, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446 Google Scholar
7. Maklad, B., C. Curtis, E. C. Fear, and G. G. Messier, "Neighborhood-based algorithm to facilitate the reduction of skin re ections in radar-based microwave," Progress In Electromagnetics Research B, Vol. 39, 115-139, 2012.
doi:10.2528/PIERB11122208 Google Scholar
8. Kurrant, D., J. Bourqui, and E. Fear, "Surface estimation for microwave imaging," Sensors, Vol. 17, 1658, 2017.
doi:10.3390/s17071658 Google Scholar
9. Garrett, J. and E. Fear, "A new breast phantom with a durable skin layer for microwave breast imaging," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1693-1700, 2015.
doi:10.1109/TAP.2015.2393854 Google Scholar
10. Bourqui, J., D. Kurrant, B. R. Lavoie, and E. C. Fear, "Adaptive monostatic system for measuring microwave re ection from the breast," Sensors, Vol. 18, No. 5, 1340, 2018.
doi:10.3390/s18051340 Google Scholar
11. Smith, M. R., I. Dasgupta, and E. Fear, "New resolution enhancement approach for tissue sensitive adaptive radar (TSAR)," 32nd Irish Signals and Systems Conference (ISSC 2021), IEEE, Athlone, Ireland, 2021, https://doi.org/10.1109/ISSC52156.2021.9467874. Google Scholar
12. Harris, F. J., "On the use of windows for harmonic analysis with the discrete fourier transform," Proceedings of the IEEE, Vol. 66, 51-83, 1978.
doi:10.1109/PROC.1978.10837 Google Scholar
13. Smith, M. R., "FFT --- fRISCy Fourier transforms," Microprocessors and Microsystems, Vol. 17, No. 9, 507-521, 1993.
doi:10.1016/S0141-9331(09)91002-X Google Scholar
14. Liang, Z. P., F. E. Boada, R. T. Constable, E. M. Haacke, P. C. Lauterbaur, and M. R. Smith, "Constrained reconstruction methods in MR imaging," Reviews of Magnetic Resonance in Medicine, Vol. 4, No. 2, 67-185, 1992. Google Scholar
15. Mitra, S. K., Digital Signal Processing: A Computer-based Approach, McGraw Hill, 1998.
16. Curtis, C., R. Frayne, and E. Fear, "Using X-ray mammograms to assist in microwave breast image interpretation," International Journal of Biomedical Imaging, 2012, doi.org/10.1155/202/235380. Google Scholar
17. SPEAG "The Finite-Difference Time-Domain (FDTD) technique,", [Online], 2020 [cited 2020 December 1]. Available from: speag.swiss/products/semcad/modules/what-is-fdtd/. Google Scholar
18. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2318-2326, 2010.
doi:10.1109/TAP.2010.2048844 Google Scholar
19. Mathworks "DTW --- Distance between signals using dynamic time warping,", [Online], 2021 [cited 2021 3]. Available from: mathworks.com/help/signal/ref/dtw.html. Google Scholar
20. Petitjean, F. and I. Paparrizos, "DBA: Averaging for dynamic time warping,", [Online], 2017 [cited 2021 3 1]. Available from: github.com/fpetitjean/DBA. Google Scholar
21. Petitjean, F., K. Ketterlin, and P. Gancarski, "A global averaging method for dynamic time warping, with applications to clustering," Pattern Recognition, Vol. 4, No. 3, 678-693, 2011.
doi:10.1016/j.patcog.2010.09.013 Google Scholar
22. Schultz, D. and B. Jain, "Non-smooth analysis and sub-gradient methods for averaging in dynamic time warping spaces," Pattern Recognition, Vol. 74, 340-358, 2017. Google Scholar
23. Chan, R. S. L., P. Gordon, and M. R. Smith, "Evaluation of dynamic time warp barycenter aver-aging (DBA) for its potential in generating a consensus nanopore signal for genetic and epigenetic sequences," International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'18), 4821-2824, IEEE, Honolulu, 2018, https://doi.org/10.1109/EMBC.2018.8512873. Google Scholar
24. Smith, M. R., R. S. L. Chan, and P. Gordon, "Evaluating the accuracy of consensus nanosequencer squiggles generated by dynamic time warp barycentre averaging (DBA)," IEEE Engineering in Medicine and Biology, 233-237, IEEE, Berlin, 2019, https://doi.org/10.1109/EMBC.2019.8856460. Google Scholar
25. Smith, M., R. Chan, M. Khurram, and P. Gordon, "Evaluating the effectiveness of ensemble voting in improving the accuracy of consensus signals produced by various DTWA algorithms from step-current signals generated during nanopore sequencing," PLoS Computational Biology, Vol. 17, No. 9, e1009350, 2021, https://doi.org/10.1371/journal.pcbi.1009350.
doi:10.1371/journal.pcbi.1009350 Google Scholar