Vol. 104
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-18
A Rapid Microwave Imaging Approach for the Diagnosis of Traumatic Brain Injury
By
Progress In Electromagnetics Research M, Vol. 104, 71-80, 2021
Abstract
This paper presents a method for rapid microwave imaging of traumatic brain injury based on scattering parameters. The algorithm uses the integer order Bessel function and Born approximation, which converts nonlinear inverse scattering problem into linear problem. After truncated singular value decomposition, imaging can be performed without iteration. Simulations and experiments show that the algorithm can not only reduce the amount of calculation for fast imaging, but also accurately image a brain hematoma or foreign body.
Citation
Bin Li Heng Liu Zekun Zhang Xiang Gao , "A Rapid Microwave Imaging Approach for the Diagnosis of Traumatic Brain Injury," Progress In Electromagnetics Research M, Vol. 104, 71-80, 2021.
doi:10.2528/PIERM21061101
http://www.jpier.org/PIERM/pier.php?paper=21061101
References

1. Hackenberg, K. and A. Unterberg, "Traumatic brain injury," Der Nervenarzt, Vol. 87, No. 2, 203-14, 2016.
doi:10.1007/s00115-015-0051-3

2. Wintermark, M., P. C. Sanelli, and Y. Anzai, "Imaging evidence and recommendations for traumatic brain injury: Conventional neuroimaging techniques," Journal of the American College of Radiology, Vol. 12, No. 2, 1-14, 2015.
doi:10.1016/j.jacr.2014.10.014

3. Heit, J. J., M. Iv, and M. Wintermark, "Imaging of intracranial hemorrhage," Journal of Stroke, Vol. 19, No. 1, 11, 2017.
doi:10.5853/jos.2016.00563

4. Mohammed, B. J., A. M. Abbosh, and D. Ireland, "Circular antenna array for brain imaging systems," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, 2012.

5. Ireland, D. and M. E. Bialkowski, "Microwave head imaging for stroke detection," Progress In Electromagnetics Research M, Vol. 21, 163-175, 2011.
doi:10.2528/PIERM11082907

6. Zamani, A., A. T. Mobashsher, B. J. Mohammed, and A. M. Abbosh, "Microwave imaging using frequency domain method for brain stroke detection," IEEE MTT-S International Microwave Workshop Series (IMWS-Bio), 1-3, 2014.

7. Mohammed, B. J., A. M. Abbosh, and S. Mustafa, "Microwave system for head imaging," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, 117-123, 2014.
doi:10.1109/TIM.2013.2277562

8. Zamani, A., "Fast frequency-based multistatic microwave imaging algorithm with application to brain injury detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 2, 653-662, 2016.

9. Mobashsher, A. T. and A. Abbosh, "Design of compact cross-fed three-dimensional slotloaded antenna and its application in wideband head imaging system," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1856-1860, 2016.
doi:10.1109/LAWP.2016.2539970

10. Mohammed, B. J., K. Bialkowski, and S. Mustafa, "Investigation of noise effect on image quality in microwave head imaging systems," IET Microwaves, Antennas and Propagation, Vol. 9, No. 3, 200-205, 2015.
doi:10.1049/iet-map.2014.0109

11. Zamani, A. and A. M. Abbosh, "Fast multi-static technique for microwave brain imaging," 2015 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, 536-537, 2015.
doi:10.1109/APS.2015.7304654

12. Fedeli, A., V. Schenone, A. Randazzo, M. Pastorino, T. Henriksson, and S. Semenov, "Nonlinear S-parameters inversion for stroke imaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, 1760-1771, 2020.
doi:10.1109/TMTT.2020.3040483

13. Semenov, S. Y. and D. R. Corfield, "Microwave tomography for brain imaging: Feasibility assessment for stroke detection," International Journal of Antennas and Propagation, 1-8, 2008.
doi:10.1155/2008/254830

14. Dilman, I., U. Yıldırm, S. Coşğun, S. Doğu, M. Çayören, and I. Akduman, "Feasibility of brain stroke imaging with microwaves," 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 334-338, 2016.
doi:10.1109/APACE.2016.7916454

15. Tobon Vasquez, J. A., R. Scapaticci, G. Turvani, G. Bellizzi, D. O. Rodriguez-Duarte, N. Joachimowicz, B. Duchêne, E. Tedeschi, M. R. Casu, L. Crocco, and F. Vipiana, "A prototype microwave system for 3D brain stroke imaging," Sensors, Vol. 20, 2607, 2020.
doi:10.3390/s20092607

16. Nikolova, N. K., "Microwave imaging for breast cancer," Microwave Magazine IEEE, Vol. 12, No. 7, 78-94, 2011.
doi:10.1109/MMM.2011.942702

17. Persson, M., A. Fhager, and H. D. Trefná, "Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 11, 2806-2817, 2014.
doi:10.1109/TBME.2014.2330554

18. Park, W. K., "Real-time microwave imaging of unknown anomalies via scattering matrix," Mechanical Systems and Signal Processing, Vol. 118, 658-674, 2019.
doi:10.1016/j.ymssp.2018.09.012

19. Haynes, M., J. Stang, and M. Moghaddam, "Microwave breast imaging system prototype with integrated numerical characterization," International Journal of Biomedical Imaging, Vol. 2012, 1-18, 2012.
doi:10.1155/2012/706365

20. Haynes, M. and M. Moghaddam, "Vector Green's function for S-parameter measurements of the electromagnetic volume integral equation," IEEE Trans. Antennas Propagation, Vol. 60, No. 3, 1400-1413, 2012.
doi:10.1109/TAP.2011.2180324

21. Haynes, M., J. Stang, and M. Moghaddam, "Real-time microwave imaging of differential temperature for thermal therapy monitoring," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 6, 1787-1797, 2014.
doi:10.1109/TBME.2014.2307072