1. Liang, J., C. C. Chiau, X. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3500-3504, 2005.
doi:10.1109/TAP.2005.858598 Google Scholar
2. Srifi, M. N., S. K. Podilchak, M. Essaaidi, and Y. M. M. Antar, "Compact disc monopole antennas for current and future Ultrawideband (UWB) applications," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4470-4480, 2011.
doi:10.1109/TAP.2011.2165503 Google Scholar
3. Cho, Y. J., K. H. Kim, D. H. Choi, S. S. Lee, and S.-O. Park, "A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1453-1460, 2006.
doi:10.1109/TAP.2006.874354 Google Scholar
4. Dong, Y. D., W. Hong, Z. Q. Kuai, and J. X. Chen, "Analysis of planar ultrawideband antennas with on-ground slot band-notched structures," IEEE Trans. Antennas Propag., Vol. 57, No. 07, 1886-1893, 2009.
doi:10.1109/TAP.2009.2021910 Google Scholar
5. Chu, Q. X. and Y. Y. Yang, "A compact ultrawideband antenna with 3.4/5.5 GHz dual band- notched characteristics," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3637-3644, 2008.
doi:10.1109/TAP.2008.2007368 Google Scholar
6. Ryu, K. S. and A. A. Kishk, "UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3637-3644, 2008. Google Scholar
7. Abbosh, A. M. and M. E. Bialkowski, "Design of UWB planar band-notched antenna using parasitic elements," IEEE Trans. Antennas Propag., Vol. 57, No. 03, 796-799, 2009.
doi:10.1109/TAP.2009.2013449 Google Scholar
8. Kim, K. H. and S. O. Park, "Analysis of the small band-rejected antenna with the parasitic strip for UWB," IEEE Trans. Antennas Propag., Vol. 54, No. 06, 1688-1692, 2006.
doi:10.1109/TAP.2006.875911 Google Scholar
9. Lui, W. J., C. H. Cheng, Y. Cheng, and H. Zhu, "Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub," Electron. Lett., Vol. 41, No. 6, 294-296, 2005.
doi:10.1049/el:20058420 Google Scholar
10. Gao, Y., B. L. Ooi, and A. P. Popov, "Band-notched ultra-wideband ring-monopole antenna," Microw. Opt. Technol. Lett., Vol. 48, No. 01, 125-126, 2006.
doi:10.1002/mop.21283 Google Scholar
11. Thomas, K. G. and M. Sreenivasan, "A simple ultrawideband planar rectangular printed antenna with band dispensation," IEEE Trans. Antennas Propag., Vol. 58, No. 01, 27-34, 2010.
doi:10.1109/TAP.2009.2036279 Google Scholar
12. Qu, S. W., J. L. Li, and Q. Xue, "A band-notched ultrawideband printed monopole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 5, 495-498, 2006.
doi:10.1109/LAWP.2006.886303 Google Scholar
13. Peng, L. and C. L. Ruan, "UWB band-notched monopole antenna design using electromagnetic-bandgap structures," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 1074-1081, 2011.
doi:10.1109/TMTT.2011.2114090 Google Scholar
14. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact dual band gap electromagnetic band gap structure," IEEE Trans. Antennas Propag., Vol. 67, No. 01, 596-600, 2019.
doi:10.1109/TAP.2018.2874702 Google Scholar
15. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact two via hammer spanner-type polarization-dependent electromagnetic-bandgap structure," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 04, 284-286, 2018.
doi:10.1109/LMWC.2018.2809042 Google Scholar
16. Zhang, L., S. Huang, Z. Huang, C. Liu, C. Wang, Z. Wan, X. Yu, and X. Wu, "Miniaturized notched ultra-wideband antenna based on EBG electromagnetic bandgap structure," Progress In Electromagnetics Research Letters, Vol. 91, 99-107, 2020. Google Scholar
17. Tang, M. C., H. Wang, T. Deng, and R. W. Ziolkowski, "Compact planar ultrawideband antennas with continuously tunable, independent band-notched filters," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3292-3301, 2016.
doi:10.1109/TAP.2016.2570254 Google Scholar
18. Horestani, A. K., Z. Shaterian, J. Naqui, F. Martın, and C. Fumeaux, "Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas," IEEE Trans. Antennas Propag., Vol. 64, No. 09, 3766-3776, 2016.
doi:10.1109/TAP.2016.2585183 Google Scholar
19. Han, L., J. Chen, and W. Zhang, "Compact UWB monopole antenna with reconfigurable band-notch characteristics," International J. of Microwave and Wireless Tech., Vol. 12, No. 03, 252-258, 2020.
doi:10.1017/S1759078719001296 Google Scholar
20. Shome, P. P., T. Khan, and R. H. Laskar, "CSRR-loaded UWB monopole antenna with electronically tunable triple band-notch characteristics for cognitive radio applications," Microw. Opt. Technol. Lett., Vol. 62, No. 09, 2919-2929, 2020.
doi:10.1002/mop.32394 Google Scholar
21. Quddious, A., M. A. B. Abbasi, M. A. Antoniades, P. Vryonides, V. Fusco, and S. Nikolaou, "Dynamically reconfigurable UWB antenna using an FET switch powered by wireless RF harvested energy," IEEE Trans. Antennas Propag., Vol. 68, No. 08, 5872-5881, 2020.
doi:10.1109/TAP.2020.2988941 Google Scholar
22. Nikolaou, S., N. D. Kingsley, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, "UWB elliptical monopoles with a reconfigurable band notch using MEMS switches actuated without bias lines," IEEE Trans. Antennas Propag., Vol. 57, No. 08, 2242-2251, 2009.
doi:10.1109/TAP.2009.2024450 Google Scholar
23. Anagnostou, D. E., M. T. Chryssomallis, B. D. Braaten, J. L. Ebel, and N. Sepúlveda, "Reconfigurable UWB antenna with RF-MEMS for on-demand WLAN rejection," IEEE Trans. Antennas Propag., Vol. 62, No. 02, 602-608, 2014.
doi:10.1109/TAP.2013.2293145 Google Scholar
24. Zheng, S. H., X. Liu, and M. M. Tentzeris, "Optically controlled reconfigurable band-notched UWB antenna for cognitive radio systems," Electron. Lett., Vol. 50, No. 21, 1502-1504, 2014.
doi:10.1049/el.2014.2226 Google Scholar
25. Zhao, D., L. Lan, Y. Han, F. Liang, Q. Zhang, and B.-Z.Wang, "Optically controlled reconfigurable band-notched UWB antenna for cognitive radio applications," IEEE Photon. Technol. Lett., Vol. 26, No. 21, 2173-2176, 2014.
doi:10.1109/LPT.2014.2349961 Google Scholar
26. Saha, C., L. A. Shaik, R. Muntha, Y. M. M. Antar, and J. Y. Siddiqui, "A dual reconfigurable printed antenna: Design concept and experimental realization," IEEE Antennas & Propag. Mag., Vol. 06, No. 03, 66-74, 2018.
doi:10.1109/MAP.2018.2819970 Google Scholar
27. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas & Propag. Mag., Vol. 55, No. 01, 49-61, 2013.
doi:10.1109/MAP.2013.6474484 Google Scholar
28. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovith, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001 Google Scholar
29. Ghosh, S., T.-N. Tran, and T. Le-Ngoc, "Dual-layer EBG-based miniaturized multi-element antenna for MIMO systems," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 3985-3997, 2014.
doi:10.1109/TAP.2014.2323410 Google Scholar
30. Yang, F. and Y. Rahmat-Samii, "icrostrip antennas integrated with electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 293-2946, 2003. Google Scholar
31. Parvathi, K. S. L., S. R. Gupta, and P. P. Bhavarthe, "A novel compact electromagnetic band gap structure to reduce the mutual coupling in multilayer MIMO antenna," Progress In Electromagnetics Research, Vol. 94, 167-177, 2020.
doi:10.2528/PIERM20051805 Google Scholar
32. Jun, S. Y., B. S. Izquierdo, and E. A. Parker, "Liquid sensor/detector using an EBG structure," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3366-3373, 2019.
doi:10.1109/TAP.2019.2902663 Google Scholar
33. Kiani, S., P. Rezaei, and M. Navaei, "Dual-sensing and dual frequency microwave SRR sensor for liquid samples permittivity detection," Elsevier Measurement, Vol. 160, Art. No. 107805, Aug. 2020. Google Scholar
34. Remski, R., "Analysis of photonic bandgap surfaces using ansoft HFSS," Microwave J., Vol. 43, No. 9, 190-199, 2000. Google Scholar
35. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure," Microw Opt. Technol Lett., Vol. 50, No. 08, 2167-2170, 2008.
doi:10.1002/mop.23598 Google Scholar
36. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact Electromagnetic-Bandgap (EBG) structure and its application for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322 Google Scholar
37. Bhattacharya, A., B. Roy, S. K. Chowdhury, and A. K. Bhattacharjee, "Compact slotted UWB monopole antenna with tuneable band-notch characteristics," Microw Opt. Technol Lett., Vol. 59, No. 9, 2358-2365, 2017.
doi:10.1002/mop.30730 Google Scholar