1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., Vol. 49, No. 6, 101-107, Jun. 2011.
doi:10.1109/MCOM.2011.5783993 Google Scholar
2. Andrews, J. G., et al. "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098 Google Scholar
3. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
4. Hong, W., K. Baek, and S. Ko, "Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6250-6261, Dec. 2017.
doi:10.1109/TAP.2017.2740963 Google Scholar
5. Ying, Z., "Antennas in cellular phones for mobile communications," Proc. IEEE, Vol. 100, No. 7, 2286-2296, Jul. 2012.
doi:10.1109/JPROC.2012.2186214 Google Scholar
6. Roh, W., et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, Feb. 2014.
doi:10.1109/MCOM.2014.6736750 Google Scholar
7. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Commun. Mag., Vol. 52, No. 9, 63-69, Sep. 2014.
doi:10.1109/MCOM.2014.6894454 Google Scholar
8. Yin, J., Q. Wu, C. Yu, H. Wang, and W. Hong, "Broadband endfire magnetoelectric dipole antenna array using SICL feeding network for 5G millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 67, No. 7, 4895-4900, Jul. 2019.
doi:10.1109/TAP.2019.2916463 Google Scholar
9. Mak, K.-M., K.-K. So, H.-W. Lai, and K.-M. Luk, "Magnetoelectric dipole leaky-wave antenna for millimeter-wave application," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6395-6402, Dec. 2017.
doi:10.1109/TAP.2017.2722868 Google Scholar
10. Tang, M., T. Shi, and R. W. Ziolkowski, "A study of 28 GHz, planar, multilayered, electrically small, broadside radiating, huygens source antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6345-6354, Dec. 2017.
doi:10.1109/TAP.2017.2700888 Google Scholar
11. Park, J., J. Ko, H. Kwon, B. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514 Google Scholar
12. Yu, B., K. Yang, C.-Y.-D. Sim, and G. Yang, "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 462-466, Jan. 2018.
doi:10.1109/TAP.2017.2772084 Google Scholar
13. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW-fed all-metallic Vivaldi antennas with pattern diversity for millimeter wave 5G access points," Progress In Electromagnetics Research M, Vol. 94, 41-49, 2020.
doi:10.2528/PIERM20052003 Google Scholar
14. Watanabe, A. O., M. Ali, S. Y. B. Sayeed, R. R. Tummala, and M. R. Pulugurtha, "A review of 5G front-end systems package integration," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 1, 118-133, Jan. 2021.
doi:10.1109/TCPMT.2020.3041412 Google Scholar
15. Zhang, Y., "Antenna-in-package technology: Its early development [historical corner]," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 111-118, Jun. 2019.
doi:10.1109/MAP.2019.2907916 Google Scholar
16. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
doi:10.1109/JPROC.2019.2933267 Google Scholar
17. Park, J., D. Choi, and W. Hong, "Millimeter-wave phased-array Antenna-in-Package (AiP) using stamped metal process for enhanced heat dissipation," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 11, 2355-2359, Nov. 2019.
doi:10.1109/LAWP.2019.2938229 Google Scholar
18. Ahmad, Z. and J. Hesselbarth, "High-efficiency wideband surface-mount elevated 3-D patch antenna for millimeter waves," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 573-576, 2017.
doi:10.1109/LAWP.2017.2682962 Google Scholar
19. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6904-6914, Dec. 2017.
doi:10.1109/TAP.2017.2759899 Google Scholar
20. Hong, W., K.-H. Baek, and A. Goudelev, "Multilayer antenna package for IEEE 802.11ad employing ultralow-cost FR4," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5932-5938, Dec. 2012.
doi:10.1109/TAP.2012.2214196 Google Scholar
21. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6372-6379, Dec. 2017.
doi:10.1109/TAP.2017.2722873 Google Scholar
22. Park, J., H. Seong, Y. N. Whang, and W. Hong, "Energy-efficient 5G phased arrays incorporating vertically polarized endre planar folded slot antenna for mmWave mobile terminals," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 230-241, Jan. 2020.
doi:10.1109/TAP.2019.2930100 Google Scholar
23. Zhang, Y. P., "Integration of microstrip patch antenna on ceramic ball grid array package," Electron. Lett., Vol. 38, No. 5, 207-208, Feb. 2002.
doi:10.1049/el:20020144 Google Scholar
24. Zhang, Y. P., M. Sun, K. M. Chua, L. L. Wai, and D. X. Liu, "Integration of slot antenna in LTCC package for 60 GHz radios," Electron. Lett., Vol. 44, No. 5, 330-331, Feb. 2008.
doi:10.1049/el:20083352 Google Scholar
25. Sun, M., Y. P. Zhang, K. M. Chua, L. L. Wai, D. Liu, and B. P. Gaucher, "Integration of Yagi antenna in LTCC package for differential 60-GHz radio," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2780-2783, Aug. 2008.
doi:10.1109/TAP.2008.927577 Google Scholar
26. Watanabe, A. O., et al. "3D glass-based panel-level package with antenna and low-loss interconnects for millimeter-wave 5G applications," 2019 IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G), 1-3, Aug. 2019. Google Scholar
27. Jin, C., V. N. Sekhar, X. Bao, B. Chen, B. Zheng, and R. Li, "Antenna-in-package design based on wafer-level packaging with through silicon via technology," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 9, 1498-1505, Sep. 2013.
doi:10.1109/TCPMT.2013.2261855 Google Scholar
28. Huang, Y. and K. Boyle, Antennas: From Theory to Practice, 379, 2008.
29. Kangasvieri, T., J. Halme, J. Vahakangas, and M. Lahti, "Broadband BGA-via transitions for reliable RF/Microwave LTCC-SiP module packaging," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 1, 34-36, Jan. 2008.
doi:10.1109/LMWC.2007.911986 Google Scholar