Vol. 116
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-10-10
Eight Shape Electromagnetic Band Gap Structure for Bandwidth Improvement of Wearable Antenna
By
Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021
Abstract
In this paper, a rectangular eight shaped Electromagnetic Band Gap (EBG) structure at 5.8 GHz Industrial, Scientific and Medical (ISM) band for wearable application is proposed with intent to improve impedance bandwidth of antenna. The unit cell of an EBG structure is formed using eight shape on outer ring with inner square patches. The simulation of the eight shape EBG unit cell is carried out using eigen mode solution of Ansys High Frequency Structure Simulator (HFSS). Simulated results are validated by experimental results. The application of proposed EBG for an inverse E-shape monopole antenna at 5.8 GHz is also demonstrated. Band stop property of EBG structure reduces surface waves, and therefore, the back lobe of a wearable antenna is reduced. The frequency detuning of antenna takes place due to high losses in human body. Suitably designed EBG structure reduces this undesirable effect and also improves front to back ratio. The proposed compact antenna with designed EBG has observed the impedance bandwidth of 5.60 GHz to 6.15 GHz which covers 5.8 GHz ISM band. Evaluation of antenna performance under bending condition and on-body condition is carried out. Effectiveness of EBG array structure for Specific Absorption Rate (SAR) reduction on three layer body model is demonstrated by simulations. Calculated values of SAR for tissue in 1 g and 10 g are both less than the limitations. In conclusion, it is appropriate to use the proposed antenna in wearable applications.
Citation
Vidya R. Keshwani, Pramod P. Bhavarthe, and Surendra Singh Rathod, "Eight Shape Electromagnetic Band Gap Structure for Bandwidth Improvement of Wearable Antenna," Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021.
doi:10.2528/PIERC21070603
References

1. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 926-935, Apr. 2009.
doi:10.1109/TAP.2009.2014527        Google Scholar

2. Haga, N., K. Saito, M. Takahashi, and K. Ito, "Characteristics of cavity slot antenna for body-area networks," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 837-843, 2009.
doi:10.1109/TAP.2009.2014577        Google Scholar

3. Velan, S., et al. "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710        Google Scholar

4. Ashyap, Y. I., et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Propagation Magazine, Vol. 16, No. 1, 2550-2553, 2017.        Google Scholar

5. Guido, K. and A. Kiourti, "Wireless wearables and implants: A dosimetry review," Bioelectromagnetics, Vol. 41, 3-20, 2020.
doi:10.1002/bem.22240        Google Scholar

6. Pinapati, S. P., J. Brittain, A. Caldow, and C. Fumeaux, "Wearable textile EBG-inspired bandwidth-enhanced patch antenna," IET Microwaves, Antennas and Propagation, Vol. 14, No. 15, 2011-2019, 2020.
doi:10.1049/iet-map.2019.1025        Google Scholar

7. Meng, F., L. Ying, and S. K. Sharma, "A miniaturized patch antenna with enhanced bandwidth by using reactive impedance surface ground and coplanar parasitic patches," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, e22225, 2020, https://doi.org/10.1002/mmce.22225.        Google Scholar

8. Cos, M. E., Y. Alvarez, and F. Las-Heras, "Enhancing patch antenna bandwidth by means of uniplanar EBG-AMC," Microw. Opt. Technol. Lett., Vol. 53, 1372-1377, 2011.
doi:10.1002/mop.25974        Google Scholar

9. Ashyap, A. Y. I., et al. "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, Jan. 2020, doi: 10.1109/ACCESS.2020.2963997.
doi:10.1109/ACCESS.2020.2963997        Google Scholar

10. Pinapati, S. P., S. J. Chen, D. Ranasinghe, and C. Fumeaux, "Detuning effects of wearable patch antennas," 2017 IEEE Asia Pacific Microwave Conference (APMC), 162-165, 2017, doi: 10.1109/APMC.2017.8251403.
doi:10.1109/APMC.2017.8251403        Google Scholar

11. Alemaryeen, A. and S. Noghanian, "On-body low-profile textile antenna with artificial magnetic conductor," IEEE Trans. Antennas. Propag., Vol. 67, No. 6, 3649-3656, Jun. 2019, doi: 10.1109/TAP.2019.2902632.
doi:10.1109/TAP.2019.2902632        Google Scholar

12. Sugumaran, B., R. Balasubramanian, and S. K. Palaniswamy, "Reduced specific absorption rate compact flexible monopole antenna system for smart wearable wireless communications," Journal of Engineering Science and Technology, Vol. 24, No. 3, 682-693, Jun. 2021.        Google Scholar

13. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low profile dual band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas. Propag., Vol. 61, No. 12, 6487-6490, Dec. 2014.
doi:10.1109/TAP.2014.2359194        Google Scholar

14. Gao, G.-P., B. Hu, S.-F. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 434-437, Mar. 2018.
doi:10.1109/LAWP.2018.2794061        Google Scholar

15. Gao, G., R. Zhang, C. Yang, H. Meng, W. Geng, and B. Hu, "Microstrip monopole antenna with a novel UC-EBG for 2.4 GHz WBAN applications," IET Microwaves, Antennas and Propagation, Vol. 13, No. 13, 2319-2323, Oct. 2019.
doi:10.1049/iet-map.2019.0271        Google Scholar

16. Gao, G., S.Wang, R. Zhang, C. Yang, and B. Hu, "Flexible EBG-backed PIFA based on conductive textile and PDMS for wearable applications," Microw. Opt. Technol. Lett., Vol. 62, No. 4, 1733-1741, 2020.
doi:10.1002/mop.32224        Google Scholar

17. Kamardin, K., et al. "Planar textile antennas with artificial magnetic conductor for body-centric communications," Appl. Phys. A Mater. Sci. Process., Vol. 4, No. 4, 1-9, 2016.        Google Scholar

18. Jiang, Z., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body area network devices," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4021-4030, Aug. 2013.
doi:10.1109/TAP.2014.2327650        Google Scholar

19. Abbasi, M. A. B., S. S. Nikolaou, M. A. Antoniades, M. Nikolic Stevanovic, and P. Vryonides, "Compact EBG-backed planar monopole for BAN wearable applications," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 453-463, Feb. 2017.
doi:10.1109/TAP.2016.2635588        Google Scholar

20. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 524-531, Feb. 2013.
doi:10.1109/TAP.2012.2223449        Google Scholar

21. Agarwal, K., Y.-X. Guo, and B. Salam, "Wearable AMC backed nearend re antenna for on-body communications on latex substrate," IEEE Trans. Compon., Packag., Manuf. Technol., Vol. 6, No. 3, 346-358, Mar. 2016.
doi:10.1109/TCPMT.2016.2521487        Google Scholar

22. Jiang, Z. H., Z. Cui, T. Yue, Y. Zhu, and D. H. Werner, "Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 4, 920-932, Aug. 2017.
doi:10.1109/TBCAS.2017.2671841        Google Scholar

23. Ashyap, A. Y. I., et al. "Highly efficient wearable CPW antenna enabled by EBGFSS structure for medical body area network applications," IEEE Access, Vol. 6, 77529-77541, 2018.
doi:10.1109/ACCESS.2018.2883379        Google Scholar

24. Ashyap, A. Y. I., Z. Zainal Abidin, S. H. Dahlan, H. A. Majid, and G. Saleh, "Metamaterial inspired fabric antenna for wearable applications," Int. J. RF Microw. Comput.-Aided Eng., Vol. 29, No. 3, Mar. 2019.
doi:10.1002/mmce.21640        Google Scholar

25. Mustafa, A. B. and T. Rajendran, "Wearable multilayer patch antenna with electromagnetic band gap structure for public safety systems," IETE Journal of Research, 1-10, 2020, doi: 10.1080/03772063.2020.1739572.
doi:10.1080/03772063.2020.1739572        Google Scholar

26. Jinpil, T., H. Youngtaek, and C. Jaehoon, "Textile antenna with EBG structure for body surface wave enhancement," Electronics Letters, Vol. 51, No. 15, 1131-1132, 2015.
doi:10.1049/el.2015.1022        Google Scholar

27. Ashyap, A. Y. I., et al. "Flexible antenna with HIS based on PDMS substrate for WBAN applications," Proc. IEEE Int. RF Microw. Conf. (RFM), 69-72, Dec. 2018.        Google Scholar

28. Ashyap, A. Y. I., et al. "Robust and efficient integrated antenna with EBG-DGS enabled wide bandwidth for wearable medical device applications," IEEE Access, Vol. 8, 56346-56358, 2020, doi: 10.1109/ACCESS.2020.2981867.
doi:10.1109/ACCESS.2020.2981867        Google Scholar

29. Bjorninen, T. and F. Yang, "Low-profile head-worn antenna with a monopole-like radiation pattern," IEEE Antennas Wireless Propag. Lett., 14, 2015.        Google Scholar

30. Hong, Y., T. Jinpil, and C. Jaehoon, "An all textile SIW cavity-backed circular ring slot antenna for WBAN applications," IEEE Antennas Wireless Propag. Lett., 15, 2016.        Google Scholar

31. Kang, D.-G., T. Jinpil, and C. Jaehoon, "Low-profile dipole antenna with parasitic elements for WBAN applications," Microw. Opt. Technol. Lett., Vol. 58, 1093-1097, 2015.        Google Scholar

32. Gao, G., B. Hu, S. Wang, and C. Yang, "Wearable planar inverted-F antenna with stable characteristic and low specific absorption rate," Microw. Opt. Technol. Lett., Vol. 60, No. 4, 876-882, Apr. 2018.
doi:10.1002/mop.31069        Google Scholar

33. Sievenpiper, D., L.-J. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001        Google Scholar

34. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact dual band gap electromagnetic band gap structure," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 596-600, Jan. 2019.
doi:10.1109/TAP.2018.2874702        Google Scholar

35. Bhavarthe, P. P., S. Rathod, and K. Reddy, "A compact two via slot type electromagnetic-bandgap structure," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 5, 446-448, May 2017.
doi:10.1109/LMWC.2017.2690822        Google Scholar

36. Lamminen, A. E. I., A. R. Vimpari, and J. Saily, "UC-EBG on LTCC for 60-GHz frequency band antenna applications," IEEE Antennas Wireless Propag. Lett., Vol. 57, No. 10, 2904-2912, Oct. 2009.
doi:10.1109/TAP.2009.2029311        Google Scholar

37. Remski, R., "Analysis of photonic bandgap surfaces using ansoft HFSS," Microwave Journal, Vol. 43, No. 9, 190-199, Sept. 2000.        Google Scholar

38. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its application for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, Jan. 2005.
doi:10.1109/TMTT.2004.839322        Google Scholar

39. Ayop, O. and M. K. A Rahim, "Analysis of mushroom-like electromagnetic band gap structure using suspended transmission line technique," 2011 IEEE International RF and Microwave Conference, 258-261, 2011, doi: 10.1109/RFM.2011.6168743.
doi:10.1109/RFM.2011.6168743        Google Scholar

40. Ashyap, A. Y. I., et al. "Inverted E-shaped wearable textile antenna for medical applications," IEEE Access, 6, 2018.        Google Scholar

41. Sakthi, B. and S. Esther, "EBG backed exible printed Yagi-Uda antenna for on-body communication," IEEE Access, 5, 2017.        Google Scholar