Vol. 115
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-09-25
Behavioral Modeling for Nonlinear Effects of Receiver Front-Ends Based on Block-Oriented Structure
By
Progress In Electromagnetics Research C, Vol. 115, 205-217, 2021
Abstract
In this paper, a novel behavioral model for the receiver front-end is presented. This model allows the accurate prediction of the nonlinear effects of the receiver front-end including the in-band distortion, intermodulation and harmonic generation. The behavioral model is a block-oriented model that consists of three blocks, the frequency conversion block, nonlinear block, and memory linear block. The nonlinear block and memory linear block are represented by the polynomials in time domain respectively, which can characterize the high-order nonlinearities and the strong memory effects by the appropriate adjustment of the polynomial order. An original model parameter identification procedure that can efficiently estimate the model parameters by using the specific input-output data is also proposed. Moreover, the presented behavioral model and identification procedure are assessed by the experiment with the excitation of single-tone signals, multitone signals and WCDMA signals, respectively. The comparison between the measurement and model simulation suggests that the behavioral model has good accuracy of the prediction of the nonlinear effects of the receiver front-end.
Citation
Chongchong Chen Hongmin Lu Yu Zhang Guangshuo Zhang , "Behavioral Modeling for Nonlinear Effects of Receiver Front-Ends Based on Block-Oriented Structure," Progress In Electromagnetics Research C, Vol. 115, 205-217, 2021.
doi:10.2528/PIERC21070804
http://www.jpier.org/PIERC/pier.php?paper=21070804
References

1. Ku, H. and J. S. Kenney, "Behavioral modeling of RF power amplifiers considering IMD and spectral regrowth asymmetries," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 799-802, Philadelphia, PA, USA, 2003.

2. Vuolevi, J., T. Rahkonen, and J. Manninen, "Measurement technique for characterizing memory effects in RF power amplifiers," RAWCON 2000, 2000 IEEE Radio and Wireless Conference (Cat. No. 00EX404), 195-198, Denver, CO, USA, 2000.

3. Dooley, J., B. O'Brien, K. Finnerty, and R. Farrell, "Estimation of sparse memory taps for RF power amplifier behavioral models," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 1, 64-66, Jan. 2015.
doi:10.1109/LMWC.2014.2361678

4. Carvalho, N. B., J. C. Pedro, W. Jang, and B. S. Michael, "Nonlinear simulation of mixers for assessing system-level performance," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 15, No. 4, 350-361, Jul. 2005.
doi:10.1002/mmce.20091

5. Mordachev, V. and E. Sinkevich, "Spurious and intermodulation response analysis of passive double-balanced mixers using the double-frequency scanning technique," 2013 International Symposium on Electromagnetic Compatibility, 737-742, 2013.

6. Peng, S., P. J. McCleer, and G. I. Haddad, "Nonlinear models for the intermodulation analysis of FET mixers," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 5, 1037-1045, May 1995.
doi:10.1109/22.382063

7. Wood, J., D. E. Root, and N. B. Tufillaro, "A behavioral modeling approach to nonlinear model-order reduction for RF/microwave ICs and systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 2, 2274-2284, Sep. 2004.
doi:10.1109/TMTT.2004.834554

8. Pedro, J. C. and S. A. Maas, "A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1150-1163, Apr. 2005.
doi:10.1109/TMTT.2005.845723

9. Zhu, A., M. Wren, and T. J. Brazil, "An efficient Volterra-based behavioral model for wideband RF power amplifiers," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 787-790, Philadelphia, PA, USA, 2003.

10. Liu, Y., J. Zhou, W. Chen, and B. Zhou, "A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers," IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, 2389-2401, May 2014.
doi:10.1109/TIE.2013.2270217

11. Pedross-Engel, A., H. Schumacher, and K. Witrisal, "Modeling and identification of ultra-wideband analog multipliers," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 1, 283-292, Jan. 2018.
doi:10.1109/TCSI.2017.2717979

12. Root, D. E., J. Wood, N. Tufillaro, D. Schreurs, and A. Pekker, "Systematic behavioral modeling of nonlinear microwave/RF circuits in the time domain using techniques from nonlinear dynamical systems," Proceedings of the 2002 IEEE International Workshop on Behavioral Modeling and Simulation, 2002, BMAS 2002, 71-74, 2002.
doi:10.1109/BMAS.2002.1291060

13. Mirri, D., G. Luculano, F. Filicori, G. Pasini, G. Vannini, and G. P. Gabriella, "A modified Volterra series approach for nonlinear dynamic systems modeling," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 8, 1118-1128, Aug. 2002.
doi:10.1109/TCSI.2002.801239

14. Traverso, P. A., D. Mirri, G. Pasini, and F. Filicori, "A nonlinear dynamic S/H-ADC device model based on a modified Volterra series: Identification procedure and commercial CAD tool implementation," IEEE Transactions on Instrumentation and Measurement, Vol. 52, No. 4, 1129-1135, Aug. 2003.
doi:10.1109/TIM.2003.815986

15. Wood, J. and D. E. Root, "The behavioral modeling of microwave/RF ICs using non-linear time series analysis," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 791-794, Philadelphia, PA, USA, 2003.

16. Grimm, M., M. Allén, J. Marttila, M. Valkama, and R. Thomä, "Joint mitigation of nonlinear RF and baseband distortions in wideband direct-conversion receivers," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 1, 166-182, Jan. 2014.
doi:10.1109/TMTT.2013.2292603