1. García-Jimeno, S., R. Ortega-Palacios, M. F. Cepeda-Rubio, A. Vera, L. Leija-Salas, and J. Estelrich, "Improved thermal ablation efficacy using magnetic nanoparticles: A study in tumor phantoms," Progress In Electromagnetics Research, Vol. 128, 229-248, 2012.
doi:10.2528/PIER12020108 Google Scholar
2. Zhu, X., J. Li, P. Peng, N. Hosseini-Nassab, and B. R. Smith, "Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite," Nano Lett., Vol. 19, 6725, 2019.
doi:10.1021/acs.nanolett.9b01202 Google Scholar
3. Trujillo-Romero, C. J., S. Garcia-Jimeno, A. Vera-Hernandez, L. Leija-Salas, and J. Estelrich, "Using nanoparticles for enhancing the focusing heating effect of an external waveguide applicator for oncology hyperthermia: Evaluation in muscle and tumor phantoms," Progress In Electromagnetics Research, Vol. 121, 343-363, 2011.
doi:10.2528/PIER11092911 Google Scholar
4. Zheng, B., et al. "Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo," Theranostics, Vol. 6, 291-301, 2016.
doi:10.7150/thno.13728 Google Scholar
5. Yu, E. Y., et al. "Magnetic particle imaging: A novel in vivo imaging platform for cancer detection," Nano Lett., Vol. 17, 1648, 2017.
doi:10.1021/acs.nanolett.6b04865 Google Scholar
6. Zhou, X. Y., et al. "Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking," Curr. Opin. Chem. Biol., Vol. 45, 131, 2018.
doi:10.1016/j.cbpa.2018.04.014 Google Scholar
7. Wu, L. C., et al. "A review of magnetic particle imaging and perspectives on neuroimaging," Am. J. Neuroradiol., Vol. 40, 206, 2019.
doi:10.3174/ajnr.A5896 Google Scholar
8. Gleich, B. and J. Weizenecker, "Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite," Nature, Vol. 435, 1214, 2005.
doi:10.1038/nature03808 Google Scholar
9. Weizenecker, J., B. Gleich, J. Rahmer, and J. Borgert, "Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles," Phys. Med. Biol., Vol. 57, 7317, 2012.
doi:10.1088/0031-9155/57/22/7317 Google Scholar
10. Graeser, M., K. Bente, and T. M. Buzug, "Dynamic single-domain particle model for magnetite particles with combined crystalline and shape anisotropy," J. Phys. D: Appl. Phys., Vol. 48, 275001, 2015.
doi:10.1088/0022-3727/48/27/275001 Google Scholar
11. Graeser, M., K. Bente, A. Neumann, and T. M. Buzug, "Trajectory dependent particle response for anisotropic mono domain particles in magnetic particle imaging," J. Phys. D: Appl. Phys., Vol. 49, 045007, 2016.
doi:10.1088/0022-3727/49/4/045007 Google Scholar
12. Orendorff, R., et al. "First in vivo traumatic brain injury imaging via magnetic particle imaging," Phys. Med. Biol., Vol. 62, 3501, 2017.
doi:10.1088/1361-6560/aa52ad Google Scholar
13. Wang, P., et al. "Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models," Quant. Imaging Med. Surg., Vol. 8, 114, 2018.
doi:10.21037/qims.2018.02.06 Google Scholar
14. Jung, K. O., H. Jo, J. H. Yu, S. S. Gambhir, and G. Pratx, "Development and MPI tracking of novel hypoxia-targeted theranostic exosomes," Biomaterials, Vol. 177, 139, 2018.
doi:10.1016/j.biomaterials.2018.05.048 Google Scholar
15. Ota, S., et al. "Effects of size and anisotropy of magnetic nanoparticles associated with dynamics of easy axis for magnetic particle imaging," J. Magn. Magn. Mater., Vol. 474, 311, 2019.
doi:10.1016/j.jmmm.2018.11.043 Google Scholar
16. Zhao, Z., N. Garraud, D. P. Arnold, and C. Rinaldi, "Effects of particle diameter and magnetocrystalline anisotropy on magnetic relaxation and magnetic particle imaging performance of magnetic nanoparticles," Phys. Med. Biol., Vol. 65, 025014, 2020.
doi:10.1088/1361-6560/ab5b83 Google Scholar
17. Makela, A. V., J. M. Gaudet, M. A. Schott, O. C. Sehl, C. H. Contag, and P. J. Foster, "Magnetic particle imaging of macrophages associated with cancer: Filling the voids left by iron-based magnetic resonance imaging," Mol. Imaging Biol., Vol. 22, 958, 2020.
doi:10.1007/s11307-020-01473-0 Google Scholar
18. Shi, X., G. Liu, X. Yan, and Y. Li, "Simulation research on magneto-acoustic concentration tomography of magnetic nanoparticles with magnetic induction," Comput. Biol. Med., Vol. 119, 103653, 2020.
doi:10.1016/j.compbiomed.2020.103653 Google Scholar
19. Yan, X., Y. Pan, W. Chen, Z. Xu, and Z. Li, "Simulation research on the forward problem of magnetoacoustic concentration tomography for magnetic nanoparticles with magnetic induction in a saturation magnetization state," J.Phys. D: Appl. Phys., Vol. 54, 075002, 2021.
doi:10.1088/1361-6463/abc27c Google Scholar
20. Yan, X., Z. Xu, W. Chen, and Y. Pan, "Implementation method for magneto-acoustic concentration tomography with magnetic induction (MACT-MI) based on the method of moments," Comput. Biol. Med., Vol. 128, 104105, 2021.
doi:10.1016/j.compbiomed.2020.104105 Google Scholar
21. Carrey, J., B. Mehdaoui, and M. Respaud, "Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization," J. Appl. Phys., Vol. 109, 083921, 2011.
doi:10.1063/1.3551582 Google Scholar
22. Halgamuge, M. N. and T. Song, "Optimizing heating efficiency of hyperthermia: Specific loss power of magnetic sphere composed of superparamagnetic nanoparticles," Progress In Electromagnetics Research B, Vol. 87, 1-17, 2020.
doi:10.2528/PIERB19121702 Google Scholar
23. Miclaus, S., M. Racuciu, and P. Bechet, "H-field contribution to the electromagnetic energy deposition in tissues similar to the brain but containing ferrimagnetic particles, during use of face-held radio transceivers," Progress In Electromagnetics Research B, Vol. 73, 49-60, 2017.
doi:10.2528/PIERB17010101 Google Scholar
24. Miclaus, S., C. Iftode, and A. Miclaus, "Would the human brain be able to erect specific effects due to the magnetic field component of an UHF field via magnetite nanoparticles?," Progress In Electromagnetics Research M, Vol. 69, 23-36, 2018.
doi:10.2528/PIERM18030806 Google Scholar
25. Rusakov, V. V., et al. "Nonlinear magnetic response of a viscoelastic ferrocolloid: Effective field approximation," Colloid J., Vol. 83, 116, 2021.
doi:10.1134/S1061933X21010117 Google Scholar
26. Das, P., et al. "Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia," J. Colloid Interface Sci., Vol. 579, 391, 2020.
doi:10.1016/j.jcis.2020.05.119 Google Scholar
27. Mamiya, H. and B. Jeyadevan, "Nonequilibrium magnetic response of anisotropic superparam-agnetic nanoparticles and possible artifacts in magnetic particle imaging," PLoS One, Vol. 10, e0118156, 2015.
doi:10.1371/journal.pone.0118156 Google Scholar
28. Gupta, A. K. and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomaterials, Vol. 26, 3995, 2005.
doi:10.1016/j.biomaterials.2004.10.012 Google Scholar
29. Kus, M., F. Ozel, N. M. Varal, and M. Ersoz, "Luminescence enhancement of OLED performance by doping colloidal magnetic FE3O4 nanoparticles," Progress In Electromagnetics Research, Vol. 134, 509-524, 2013.
doi:10.2528/PIER12103106 Google Scholar
30. Kötitz, R., et al. "Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles," J. Magn. Magn. Mater., Vol. 194, 62, 1999.
doi:10.1016/S0304-8853(98)00580-0 Google Scholar
31. Ekaterina, A., O. Alexey, and J. Philip, "Static magnetization of immobilized, weakly interacting, superparamagnetic nanoparticles," Nanoscale, Vol. 11, 21834, 2019.
doi:10.1039/C9NR07425B Google Scholar
32. Li, Y., Q. Ma, D. Zhang, and R. Xia, "Acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction," Chin. Phys. B., Vol. 20, 084302, 2011.
doi:10.1088/1674-1056/20/8/084302 Google Scholar
33. Ota, S., T. Yamada, and Y. Takemura, "Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement," J. Appl. Phys., Vol. 117, 17D713, 2015.
doi:10.1063/1.4914061 Google Scholar
34. Brandl, M., M. Mayer, J. Hartmann, T. Posnicek, C. Fabian, and D. Falkenhagen, "Theoretical analysis of ferromagnetic microparticles in streaming liquid under the in uence of external magnetic forces," J. Magn. Magn. Mate., Vol. 322, 2454, 2011.
doi:10.1016/j.jmmm.2010.02.056 Google Scholar