1. Andrews, J. G., et al. "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098 Google Scholar
2. Anguera, J., A. Andújar, and C. García, "Multiband and small coplanar antenna system for wireless handheld devices," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3782-3789, Jul. 2013.
doi:10.1109/TAP.2013.2253297 Google Scholar
3. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6679-6686, Dec. 2017.
doi:10.1109/TAP.2017.2671028 Google Scholar
4. Barani, I. R. R. and K. Wong, "Integrated inverted-F and open-slot antennas in the metal-framed smartphone for 2 × 2 LTE LB and 4 × 4 LTE M/HB MIMO operations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5004-5012, Oct. 2018.
doi:10.1109/TAP.2018.2854191 Google Scholar
5. Kurvinen, J., H. Kähkönen, A. Lehtovuori, J. Ala-Laurinaho, and V. Viikari, "Co-designed mm-Wave and LTE handset antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1545-1553, Mar. 2019.
doi:10.1109/TAP.2018.2888823 Google Scholar
6. Li, M., et al. "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3820-3830, Sept. 2016.
doi:10.1109/TAP.2016.2583501 Google Scholar
7. Ren, A., Y. Liu, and C.-Y.-D. Sim, "A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6430-6438, Oct. 2019.
doi:10.1109/TAP.2019.2920306 Google Scholar
8. Zou, H., et al. "Dual-functional MIMO antenna array with high isolation for 5G/WLAN applications in smartphones," IEEE Access, Vol. 7, 167470-167480, 2019.
doi:10.1109/ACCESS.2019.2953311 Google Scholar
9. Li, Y., C. Sim, Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018.
doi:10.1109/ACCESS.2017.2763161 Google Scholar
10. Ilvonen, J., R. Valkonen, J. Holopainen, and V. Viikari, "Design strategy for 4G handset antennas and a multiband hybrid antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1918-1927, Apr. 2014.
doi:10.1109/TAP.2014.2300131 Google Scholar
11. Ding, C. F., X. Y. Zhang, C. Xue, and C. Sim, "Novel pattern-diversity-based decoupling method and its application to multielement MIMO antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 4976-4985, Oct. 2018.
doi:10.1109/TAP.2018.2851380 Google Scholar
12. Li, Y. R., B. Gao, X. Zhang, and K. Huang, "Beam management in millimeter-wave communications for 5G and beyond," IEEE Access, Vol. 8, 13282-13293, 2020.
doi:10.1109/ACCESS.2019.2963514 Google Scholar
13. Yang, B., Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, "Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 7, 3403-3418, Jul. 2018.
doi:10.1109/TMTT.2018.2829702 Google Scholar
14. Hong, W., "Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift," IEEE Microwave Magazine, Vol. 18, No. 7, 86-102, Nov.-Dec. 2017.
doi:10.1109/MMM.2017.2740538 Google Scholar
15. Yu, B., K. Yang, C. Sim, and G. Yang, "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 462-466, Jan. 2018.
doi:10.1109/TAP.2017.2772084 Google Scholar
16. Helander, J., K. Zhao, Z. Ying, and D. Sjöberg, "Performance analysis of millimeter-wave phased array antennas in cellular handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 504-507, 2016.
doi:10.1109/LAWP.2015.2455040 Google Scholar
17. Zhang, S., X. Chen, I. Syrytsin, and G. F. Pedersen, "A planar switchable 3-D-coverage phased array antenna and its user effects for 28-GHz mobile terminal applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6413-6421, Dec. 2017.
doi:10.1109/TAP.2017.2681463 Google Scholar
18. Ojaroudiparchin, N., M. Shen, S. Zhang, and G. F. Pedersen, "A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1747-1750, 2016.
doi:10.1109/LAWP.2016.2532607 Google Scholar
19. Li, T. and W. Geyi, "Design of MIMO beamforming antenna array for mobile handsets," Progress In Electromagnetic Research C, Vol. 94, 13-28, 2019.
doi:10.2528/PIERC19030807 Google Scholar
20. Samadi Taheri, M. M., A. Abdipour, S. Zhang, and G. F. Pedersen, "Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals," IEEE Transactions on Vehicular Technology, Vol. 68, No. 4, 4042-4046, Apr. 2019.
doi:10.1109/TVT.2019.2899178 Google Scholar
21. Geyi, W., Foundations of Applied Electrodynamics, 273-275, Wiley, New York, NY, USA, 2010.
doi:10.1002/9780470661369
22. Geyi, W., Foundations for Radio Frequency Engineering, 410-420, World Scientific, 2015.
23. Geyi, W., "The method of maximum power transmission efficiency for the design of antenna arrays," IEEE Open Journal of Antennas and Propagation, Vol. 2, 412-430, 2021.
doi:10.1109/OJAP.2021.3066310 Google Scholar
24. Tong, H. and W. Geyi, "Optimal design of smart antenna systems for handheld devices," IET Microw. Antennas Propag., Vol. 10, No. 6, 617-623, 2016.
doi:10.1049/iet-map.2015.0339 Google Scholar
25. He, X., W. Geyi, and S. Wang, "hexagonal focused array for microwave hyperthermia: Optimal design and experiment," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 56-59, 2016.
doi:10.1109/LAWP.2015.2429596 Google Scholar
26. Qin, Z., W. Geyi, M. Zhang, and J. Wang, "Printed eight-element MIMO system for compact and thin 5G mobile handest," Electronic Letters, Vol. 52, No. 6, 416-418, 2016.
doi:10.1049/el.2015.3960 Google Scholar
27. Wan, W., W. Geyi, and S. Gao, "Optimum design of low-cost dual-mode beam-steerable arrays for customer-premises equipment applications," IEEE Access, Vol. 6, 16092-16098, Mar. 2018.
doi:10.1109/ACCESS.2018.2813299 Google Scholar
28. Miao, X., W. Wan, Z. Duan, and W. Geyi, "Design of dual-mode arc-shaped dipole arrays for indoor base-station applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 752-756, Apr. 2019.
doi:10.1109/LAWP.2019.2901967 Google Scholar