Vol. 115
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-09-13
Research on Estimation Method of Information of Multiple Charged Particles Using Electrostatic Sensor Array
By
Progress In Electromagnetics Research C, Vol. 115, 127-144, 2021
Abstract
The electrostatic sensor is a rapidly developing particle monitoring sensor. This paper applies sensor array to inverse the information carried by detected multiple charged particles precisely. It breaks through the constraint that the detailed information of particles cannot be obtained in previous studies. The proposed method can be widely applied to oil line and gas path debris monitoring. The sensing mathematical model and the finite-element model are established. A compressive sensing-based method is proposed to invert the information of charged particles. Through simulation and experimental verification, the method can accurately estimate the centroid of multiple particles, the total charge quantity of the particle cluster, the spatial position of each particle and the charge quantity carried by each particle in the multiple particles with a low error rate when the multiple particles are distributed near the pipe wall of flow channel.
Citation
Zhirong Zhong, Hongfu Zuo, Jiachen Guo, and Heng Jiang, "Research on Estimation Method of Information of Multiple Charged Particles Using Electrostatic Sensor Array," Progress In Electromagnetics Research C, Vol. 115, 127-144, 2021.
doi:10.2528/PIERC21072202
References

1. Wen, Z., J. Hou, and J. Atkin, "A review of electrostatic monitoring technology: The state of the art and future research directions," Progress in Aerospace Sciences, Vol. 94, 1-11, 2017.
doi:10.1016/j.paerosci.2017.07.003

2. Couch, R. P. and D. R. Rossbach, "Sensing jet engine performance and incipient failure with electrostatic probes," DTIC Document, 1972.

3. Rosenbush, D. M. and R. P. Couch, "Electrostatic engine diagnostics with acceleration related threshold,", U.S. Patent, 1986.

4. Powrie, H. and K. McNicholas, "Gas path condition monitoring during accelerated mission testing of a demonstrator engine," The 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2904, 1997.

5. Powrie, H. and J. Worsfold, "Gas path debris monitoring for heavy-duty gas turbines-a pilot study," IDGTE Gas Turbine Symposium, 168-179, 2001.

6. Angello, L., "Combustion turbine electrostatic debris monitoring system (EDMS) assessment, electric power research institute EPRI," Tech. Rep., 2004.

7. Powrie, H., R. Wood, T. Harvey, L. Wang, and S. Morris, "Electrostatic charge generation associated with machinery component deterioration, In Proceedings," IEEE Aerospace Conference, Vol. 6, 6-6, 2002.
doi:10.1109/AERO.2002.1036140

8. Lin, J., Z. S. Chen, Z. Hu, Y. M. Yang, and X. Tang, "Analytical comparisons of electrostatic sensors with various geometric probes for gas path monitoring," 2014 Prognostics and System Health Management Conference (PHM-2014 Hunan), 1-5, 2014.

9. Chen, Z. S., X. Tang, Z. Hu, and Y. M. Yang, "Investigations into sensing characteristics of circular thin-plate electrostatic sensors for gas path monitoring," Chinese Journal of Aeronautics, Vol. 27, No. 4, 812-820, 2014.
doi:10.1016/j.cja.2014.03.019

10. Xu, C., J. Li, H. Gao, and S. Wang, "Investigations into sensing characteristics of electrostatic sensor arrays through computational modelling and practical experimentation," Journal of electrostatics, Vol. 70, No. 1, 60-71, 2012.
doi:10.1016/j.elstat.2011.10.004

11. Krabicka, J. and Y. Yan, "Finite-element modeling of electrostatic sensors for the flow measurement of particles in pneumatic pipelines," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 8, 2730-2736, 2009.
doi:10.1109/TIM.2009.2016288

12. Wang, L. J. and Y. Yan, "Mathematical modelling and experimental validation of electrostatic sensors for rotational speed measurement," Measurement Science and Technology, Vol. 25, No. 11, 115101, 2014.
doi:10.1088/0957-0233/25/11/115101

13. Zhang, S., Y. Yan, X. C. Qian, and Y. H. Hu, "Mathematical modeling and experimental evaluation of electrostatic sensor arrays for the flow measurement of fine particles in a square-shaped pipe," IEEE Sensors Journal, Vol. 16, No. 23, 8531-8541, 2016.

14. Tasbaz, O. D., R. J. K. Wood, M. Browne, H. E. G. Powrie, and G. Denuault, "Electrostatic monitoring of oil lubricated sliding point contacts for early detection of scuffing," Wear, Vol. 230, No. 1, 86-97, 1999.
doi:10.1016/S0043-1648(98)00420-7

15. Powrie, H. E. G., C. E. Fisher, O. D. Tasbaz, and R. J. K.Wood, "Performance of an electrostatic oil monitoring system during an FZG gear scuffing test," Proceedings of the International Conference on Condition Monitoring, 145-155, 1999.

16. Powrie, H. E. G., "Use of electrostatic technology for aero engine oil system monitoring," 2000 IEEE Aerospace Conference Proceedings, Vol. 6, 57-72, 2000.
doi:10.1109/AERO.2000.877883

17. Powrie, H. E. G. and C. E. Fisher, "Engine health monitoring: Towards total prognostics," 1999 IEEE Aerospace Applications Conference Proceedings, Vol. 3, 11-20, 1999.
doi:10.1109/AERO.1999.789759

18. Mao, H. J., "Research on key technologies of health management of lubricating oil system and its lubrication parts,", unpublished doctoral dissertation.

19. Tang, X., Z. S. Chen, Y. Li, and Y. M. Yang, "Compressive sensing-based electrostatic sensor array signal processing and exhausted abnormal debris detecting," Mechanical Systems and Signal Processing, Vol. 105, 404-426, 2018.
doi:10.1016/j.ymssp.2017.12.022

20. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

21. Candès, E. J., "Compressive sampling," Proceedings of the International Congress of Mathematicians, Vol. 3, 1433-1452, 2006.

22. Candès, E. J. and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies," IEEe Transactions on Information Theory, Vol. 52, No. 12, 5406-5425, 2006.
doi:10.1109/TIT.2006.885507

23. Wang, C., S. Zhang, Y. Li, and L. Jia, "Optimization of ESA for velocity distribution measurement based on cross-correlation sensitivity weighting method," Process 2019 IEEE International Instrumentation and Measurement Technology Conference, 1-6, 2019.

24. Armour-Chelu, D. I., S. R. Woodhead, and R. N. Barnes, "The electrostatic charging trends and signal frequency analysis of a particulate material during pneumatic conveying," Powder Technology, Vol. 96, No. 3, 181-189, 1998.
doi:10.1016/S0032-5910(97)03365-2

25. Hussain, T., W. Kaialy, T. Deng, M. S. Bradley, A. Nokhodchi, and D. Armour-Chélu, "A novel sensing technique for measurement of magnitude and polarity of electrostatic charge distribution across individual particles," International journal of pharmaceutics, Vol. 441, No. 1-2, 781-789, 2013.
doi:10.1016/j.ijpharm.2012.10.002

26. Dunn, J. C., "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters," Journal of Cybernetics, Vol. 3, No. 3, 32-57, 1973.
doi:10.1080/01969727308546046

27. Mao, H. J., H. F. Zuo, H. Wang, Y. B. Yin, and X. Li, "Debris recognition methods in the lubrication system with electrostatic sensors," Mathematical Problems in Engineering, 2018.

28. Mao, H. J., H. F. Zuo, W. J. Huang, Y. B. Yin, and C. N. Liu, "Mathematical modeling and calibration experiment of new electrostatic sensor in aviation," Acta Aeronautica et Astronautics Sinica, Vol. 37, No. 7, 2242-2250, 2016.

29. Huang, W. J., "Study on technologies of in-line electrostatic abrasive monitoring and distinguishing in oil system,", unpublished doctoral dissertation.